ISSN 1008-2204
CN 11-3979/C

基于ICA K-Means的产品口碑演化聚类与营销分析

李红, 潘娜

李红, 潘娜. 基于ICA K-Means的产品口碑演化聚类与营销分析[J]. 北京航空航天大学学报社会科学版, 2016, 29(6): 45-53. DOI: 10.13766/j.bhsk.1008-2204.2014.0578
引用本文: 李红, 潘娜. 基于ICA K-Means的产品口碑演化聚类与营销分析[J]. 北京航空航天大学学报社会科学版, 2016, 29(6): 45-53. DOI: 10.13766/j.bhsk.1008-2204.2014.0578
LI Hong, PAN Na. Clustering and Marketing Analysis for Products Online Word-of-mouth Activity Series Based on ICA K-Means[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2016, 29(6): 45-53. DOI: 10.13766/j.bhsk.1008-2204.2014.0578
Citation: LI Hong, PAN Na. Clustering and Marketing Analysis for Products Online Word-of-mouth Activity Series Based on ICA K-Means[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2016, 29(6): 45-53. DOI: 10.13766/j.bhsk.1008-2204.2014.0578

基于ICA K-Means的产品口碑演化聚类与营销分析

基金项目: 

国家自然科学基金资助项目(71471009);教育部人文社科学研究规划基金资助项目(11YJA630044)

详细信息
    作者简介:

    李红(1969-),女,黑龙江哈尔滨人,副教授,博士,研究方向为数据挖掘、社会计算.

  • 中图分类号: F713

Clustering and Marketing Analysis for Products Online Word-of-mouth Activity Series Based on ICA K-Means

  • 摘要: 对于产品而言,其在线口碑的活跃度是非常具有代表性的一个指标。在线口碑活跃度的高低,直接揭示产品的生命周期演化模式,对于产品生命周期有全面的了解有助于决策者制定营销计划以及战略。但由于产品在线评论的高维性和复杂性,使得其聚类的难度加大。所以,在普通的K均值算法的基础上引入独立成份分析,对异类产品之间或同类产品在线口碑的活跃度之间进行聚类分析,可以大大降低复杂性和提升聚类准确性;同时深入分析提取出的产品生命周期曲线,有效提升在线口碑信息在电子商务营销管理与决策支持中的作用,深化在线口碑活跃度的管理学视角研究。
    Abstract: For product, online word-of-mouse activity is a very typical index, which reveals life cycle evolution model of product. Understanding the product life cycle helps decision makers to make marketing strategy. It is more difficult to do clustering analysis because the product online comments are high-dimensional and complex. Thus, combining K-means algorithm with independent comment analysis and clustering products by this algorithm can improve the accuracy and reduce complexity in no small measure. Furthermore, in-depth analysis on the product life curve can effectively improve the effect of online word-of-mouth information in e-commerce marketing management and decision support, deepening the research on online reputation activity.
  • [1] 余传明.从产品评论中挖掘观点:原理与算法分析[J].情报理论与实践,2009,32(7):124-128.
    [2]

    WANG Z.Fixed-point algorithms for constrained ICA and their applications in fMRI data analysis[J].Magnetic Resonance Imaging,2011,29(9):1288-1303.

    [3]

    BACK A D,WEIGEND A S.A first application of independent component analysis to extracting structure from stock returns[J].International Journal of Neural Systems,2011,8(4):473-484.

    [4] 段哲民,马裕,彭斌,等.基于盲源分离的商业销售计算机仿真分析[J].计算机仿真,2009(11):308-311.
    [5] 苏木亚,郭崇慧.基于主成分分析的单变量时间序列聚类方法[J].运筹与管理,2011(6):66-72.
    [6] 唐珊珊,孙路路.基于FastICA算法的混合图像分离方法[J].宿州学院学报,2010,25(2):52-54.
    [7] 戴庆辉,魏红丽.基于产品生命周期的顾客满意度与产品理想度研究[J].科技创新与应用,2014(3):17-18.
    [8] 田大明.基于产品生命周期面向运营商服务策略研究[J].市场周刊:理论研究,2009(9):55-56.
    [9] 刘玉明.在线口碑信息对消费者购买决策影响的研究[J].价格理论与实践,2010(3):77-78.
    [10] 胡雪飞.口碑营销——零售企业营销制胜的利器[J].中小企业管理与科技,2012(4):30-32.
    [11] 刘艳.论口碑传播销售策略[J].中国商贸,2010(12):27-28.
计量
  • 文章访问数:  530
  • HTML全文浏览量:  37
  • PDF下载量:  349
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-12
  • 网络出版日期:  2022-10-13
  • 发布日期:  2016-11-24

目录

    /

    返回文章
    返回