An Empirical Research on Financial Crisis Forecasting Based on BP Neural Network
-
摘要: 财务危机预警具有重要的经济研究价值。在考虑中国现行会计信息供给状况基础上,构建了包含偿债能力、资产管理能力、盈利能力、成长性、现金流量以及会计信息披露质量的六大类预警指标体系。以沪、深两市上市公司为样本,比较了经秩和检验前后,BP神经网络模型的预警效果。结果显示:BP神经网络模型在中国上市公司财务危机预警中具有良好的应用价值,特别是经秩和检验以后,模型判别准确率显著提高,具有很强的优越性。Abstract: The research on financial distress prediction is significant to the economy. Tak ing into full account the status quo of the accounting information supply in Chi na, this paper constructs a six-category warning index system in cluding solvency, assets and liabilities management, profitability, growth, cash flow and the disclosure quality of accounting information. It compares the effe cts of early warning using BP Neural Network before and after the rank sum test, sampling the listed companies in Shenzhen and Shanghai Security Markets. The re sults show that BP neural network model has good application value to the warnin g for financial distress of China's listed companies. Especially, the accurac y of obtained classifying model is improved obviously after the rank sum test.
-
-
[1] Ohlson J A. Financial Ratios and the Probabilistic Prediction of Bankruptcy[J]. Journal of Accounting Research, 1980, 19. [2] Odom M D, Sharda R. A Neural Network for Bankruptcy Prediction [J]. In ternational Joint Conference on Neural Network, 1990, 6(2): 17-20. [3] Messier W F, Hansen J V. Inducing Rules for Expert System Development: an Example Using Default and Bankruptcy Data[J]. Management Science, 1998, (34): 1403-1415. [4] Feng Yu Lin, Sally Mc Clean. A Data Mining Approach to the Prediction of Corporate Failure [J]. Knowledge-Based Systems, 2001, 14: 189-195. [5] 陈静. 上市公司财务恶化预测的实证分析[J]. 会计研究, 1999, (4): 45-54. [6] 杨保安, 季海, 徐晶. BP神经网络在企业财务危机预警之应用[J]. 预测, 2001, 20(2): 49-54. [7] 周敏, 王新宇. 基于模糊优选和神经网络的企业财务危机预警[J]. 管理科学学报 , 2002, 5(3): 86-90. [8] 张秋水, 罗林开, 刘晋明. 基于支持向量机的中国上市公司财务困境预测[J]. 计 算机应用, 2006,(S1): 153-155. [9] 邱玉莲, 朱琴. 基于支持向量机的财务预警方法[J]. 统计与决策, 2006,(16): 153-155. [10] 张在旭, 宋杰鲲, 张宇. 一种基于支持向量机的企业财务危机预警新 型[J]. 企业管理,2006,4(30): 132-136. [11] 贺昌政,李晓峰,俞海. BP人工神经网络模型的新改进及其应用[J]. 数学的实践 与认识, 2002, (7): 554-561. [12] 姚一波, 王纪亮. 提高BP网络训练速度的研究[J]. 信息技术, 2001, (1): 4-9 .
计量
- 文章访问数: 1796
- HTML全文浏览量: 2
- PDF下载量: 1192