ISSN 1008-2204
CN 11-3979/C

混合策略Nash均衡的风险特性及其影响研究

何大义, 邱菀华

何大义, 邱菀华. 混合策略Nash均衡的风险特性及其影响研究[J]. 北京航空航天大学学报社会科学版, 2005, 18(1): 17-21.
引用本文: 何大义, 邱菀华. 混合策略Nash均衡的风险特性及其影响研究[J]. 北京航空航天大学学报社会科学版, 2005, 18(1): 17-21.
HE Da-yi, QIU Wan-hua. Study on Risks of Mixed Strategy Nash Equilibrium and Its Effects[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2005, 18(1): 17-21.
Citation: HE Da-yi, QIU Wan-hua. Study on Risks of Mixed Strategy Nash Equilibrium and Its Effects[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2005, 18(1): 17-21.

混合策略Nash均衡的风险特性及其影响研究

详细信息
    作者简介:

    何大义(1973-),男,四川成都人,讲师,博士,研究方向为博弈论与风险决 策理论.

  • 中图分类号: F224

Study on Risks of Mixed Strategy Nash Equilibrium and Its Effects

  • 摘要: 首先指出了当博弈达到混合策略Nash均衡时,对于博弈参与者而言存在着一定的决 策风险。但是由于一般决策问题与博弈问题之间存在着显著的差异,所以传统的应用于决策 的风险度量方法不能直接应用于博弈决策的风险度量。于是笔者结合博弈决策问题的特点, 给出了一种结合博弈参与者的期望效用、策略的不确定性以及绝对风险厌恶系数的风险度量 方法。并在该风险度量的基础上,讨论了参与者的风险类型对于博弈均衡实现的影响。
    Abstract: In this paper, the authors first point out that game players are faced with some risk of decision-making when mixed strategy Nash equilibrium is achieved, and that the risk can not be directly measured with the conventional methods applied in weighing risks of general decision-making because this is the case with a g ame. Therefore, by integrating the expected utility, uncertainty and the absolut e risk aversion coefficient of players, the authors present a new method to meas ure the risk facing the players in a game, on the basis of which the authors dis cuss the effects on the realization of equilibrium in game playing.
  • [1] Layne H J. Risk and Antagonism in Two-person Non-cooperativ e Games . University of Southwestern Louisiana, 1990.
    [2] Klompstra M B. Nash Equilibria in Risk-Sensitive Dynamic Games[J]. IEEE Transactions on Automatic Control,2000,(45): 1397-1401.
    [3] Dennis Palmini. Uncertainty, Risk Aversion, and the Game Theoretic Foundations of the Safe Minimum Standard: a Reassessment[J].Ecological Economi cs,1999,(29): 463-472.
    [4] Viaene S, Veugelers R, Dedene G. Insurance Bargaining under Risk Av ersion[J].Economic Modelling, 2002,(19):245-259.
    [5] 张维迎.博弈论与信息经济学[M]. 上海:上海三联书店/上海人民出版社,1996 .108-109.
    [6] Neyman A,Okada D. Strategic Entropy and Complexity in Repeated G ames[J].Games and Economic Behavior, 1999,(29):191-223.
    [7] Neyman A,Okada D. Repeated Games with Bounded Entropy[J]. Games and Economic Behavior, 2000,(30):228-247.
    [8] Kapur J N, Kesavan H K. Entropy Optimization Principles with Appli cations[M]. London: Academic Press, Inc., 1992.
    [9] 邱菀华.管理决策与应用熵学[M]. 北京:机械工业出版社,2002.
计量
  • 文章访问数:  1355
  • HTML全文浏览量:  0
  • PDF下载量:  712
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-07-06
  • 发布日期:  2005-03-24

目录

    /

    返回文章
    返回