ISSN 1008-2204
CN 11-3979/C

两种区间数据主成分分析方法的比较研究

王惠文, 李岩, 关蓉

王惠文, 李岩, 关蓉. 两种区间数据主成分分析方法的比较研究[J]. 北京航空航天大学学报社会科学版, 2011, 24(4): 86-89.
引用本文: 王惠文, 李岩, 关蓉. 两种区间数据主成分分析方法的比较研究[J]. 北京航空航天大学学报社会科学版, 2011, 24(4): 86-89.
Wang Huiwen, Li Yan, Guan Rong. A Comparison Study of Two Methods for Principal Component Analysis of Interval Data[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2011, 24(4): 86-89.
Citation: Wang Huiwen, Li Yan, Guan Rong. A Comparison Study of Two Methods for Principal Component Analysis of Interval Data[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2011, 24(4): 86-89.

两种区间数据主成分分析方法的比较研究

基金项目: 国家自然科学基金资助项目(70771004,70821061)
详细信息
    作者简介:

    王惠文(1957—),女,河北玉田人,教授,博士,研究方向为复杂数据分析、统计与市场学、数据挖掘.

  • 中图分类号: TP311

A Comparison Study of Two Methods for Principal Component Analysis of Interval Data

  • 摘要: 针对顶点主成分分析算法(VPCA)计算量会随着变量个数的增加而按指数速度增长的问题,Cazes P提出一种简化算法,通过直接计算VPCA的相关系数矩阵,可以消除大量的冗余计算,解决VPCA的维数灾难问题。文章通过对这两种方法的计算过程和计算结果进行比较,说明这两种方法在计算结果上是完全等价的,但是,Cazes P提出的简化算法的计算过程更简单、所占据的存储空间更小、计算速度更快,实验分析进一步验证了理论分析的相关结论。
    Abstract: A simplified method of VPCA was raised by Cazes P. The proposed method eliminates large amounts of redundant computation by calculating correlation matrix of the vertices matrix directly. A comparison study of VPCA and the simplified method shows that the two methods lead to the same results. However, the simplified method has higher speed and smaller occupied-space. An empirical analysis verified the conclusion of theoretical analysis.
  • [1] Diday E, Noirhomme-Traiture M. Symbolic data analysis and the SODAS software
    [2] Cazes P, Chouakria A, Diday E, et al. Extension de l’analyse en composantes principales à des données de type intervalle
    [3] Chouakria A, Diday E, Cazes P. An improved factorial representation of symbolic objects //Studies and Research, Proceedings of the Conference on Knowledge Extraction and Symbolic Data Analysis: KESDA’98. Luxembourg: Office for Official Publications of the European Communities, 1998: 276-289.
    [4] Lauro C, Palumbo F. Principal components analysis of interval data: a symbolic data analysis approach
    [5] Palumbo F, Lauro C. A PCA for interval valued data based on midpoints and radii
    [6] Irpino A. ‘Spaghetti’ PCA analysis: an extension of principal components analysis to time dependent interval data
    [7] Gioia F, Lauro C. Principal component analysis on interval data
计量
  • 文章访问数:  1450
  • HTML全文浏览量:  0
  • PDF下载量:  1238
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-11
  • 发布日期:  2011-07-24

目录

    /

    返回文章
    返回