ISSN 1008-2204
CN 11-3979/C
CHEN Dang-yang, JIA Su-ling, WANG Hui-wen. Performance Evaluation Model of Capital Operation about  Industrial Enterprises Based on Optimized BP Neural Network[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2007, 20(3): 1-5.
Citation: CHEN Dang-yang, JIA Su-ling, WANG Hui-wen. Performance Evaluation Model of Capital Operation about  Industrial Enterprises Based on Optimized BP Neural Network[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2007, 20(3): 1-5.

Performance Evaluation Model of Capital Operation about  Industrial Enterprises Based on Optimized BP Neural Network

Funds: 国家自然科学基金创新研究群体科学基金资助项目
More Information
  • Received Date: June 04, 2006
  • Published Date: September 24, 2007
  • According to defects of traditional performance evaluation models, BP neural net work is used to evaluate performance of capital operation. Some optimizations to BP neural networks are done. The learning mechanism of self adaptation optimize s the learning ratio of BP neural networks. The accelerating mechanism of moment um item accelerates the constringent velocities of BP neural networks. The genet ic algorithm is used to select initial parameters of BP neural networks. Lastly, performance data of capital operation in 500 industrial enterprises is used to prove validity of the model.
  • [1] FriedrichKBarmanFLearninAlgorithfoMultLaye reNeuraNetworkBaseoLineaLeasSquarProblems[J]NeuraNetworks,19934(6)127-602.
    [2] ImranHHowarCAdaptivInformatioAgentUsinCompetitiv Learning[J]JournaoNetworanComputeApplication199812(21)69-89.
    [3] LiZPanLXMNeuraNetworCredit-risEvaluatioMode BaseoBack-propagatioAlgorithm[J]MachinLearninanCybernetics2 0024(3)1702-1706.
    [4] JosephBDatMininwitNeuraNetworks[M]NeYorkMcGraw- HilCompanies19963-27.
    [5] VoglPMangiKRigleKAcceleratinthConvergencotheBackpropagatioMethod[J]BiologicaCybernetics198859(3)257-263.
    [6] JacobsAIncreaseRateoConvergencThrougLearninratAdap tation[J]NeuraNetworks19881(4)295-307.
    [7] HisnCLCSuSAAdaptivTraininAlgorithfoBack-p ropagatioNeuraNetwork[J]IEETransactiooSystemMaanCybernetice,199525(4)512-527.
    [8] CnstilloARomerGStatisticaAnalysiothMaiParameteIm proveithDesigoGenetiAlgorithm[J]IEETransactionoSystems MaanCybernetic(ParC)200232(1)31-37.
    [9] MagoulasDVrahstiNAndroulakiSEffectivBack-propogat ioWitVariablSteSize[J]NeuraNetworks199710(4)69-82.
  • Related Articles

    [1]HOU Zeqi. Functions of Algorithmic Interpretation in Algorithmic Patentability[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2024, 37(1): 175-183. DOI: 10.13766/j.bhsk.1008-2204.2022.0219
    [2]ZHAO Zhenyu, LIU Yufan, LIU Shancun, MA Haibo. Social Risks of Countries Involved in the Belt and Road Initiative: An Empirical Analysis Based on BP Neural Network[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2023, 36(4): 105-114. DOI: 10.13766/j.bhsk.1008-2204.2021.0707
    [3]REN Anqi. Rules for Determining Copyright Infringement of Algorithm Recommendation on Network Service Platforms[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2023, 36(3): 190-198. DOI: 10.13766/j.bhsk.1008-2204.2021.0801
    [4]WEN Ming, MO Yin. Legal Regulation of Big Data Price Discrimination Algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2023, 36(2): 59-66. DOI: 10.13766/j.bhsk.1008-2204.2021.0250
    [5]MENG Zilong. Time Constraint and Algorithm Optimization of Policy Legitimacy in Intelligent Age[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2021, 34(3): 80-87. DOI: 10.13766/j.bhsk.1008-2204.2020.0020
    [6]ZHANG Linghan. Algorithm Liability in Electronic Commerce Law and Its Improvement[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2018, 31(6): 16-21. DOI: 10.13766/j.bhsk.1008-2204.2018.0327
    [7]HU Yan-jie, XIA Guo-ping. An Empirical Research on Financial Crisis Forecasting Based on BP Neural Network[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2009, 22(4): 18-21.
    [8]LIU Jun-li. The Simplified Algorithms for Portfolio Selection and Its Application[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2006, 19(1): 16-19.
    [9]YANG Bao-chen, WANG Li-qin, LU Yu. Application of Genetic Algorithm in Index Portfolio Selection[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2005, 18(4): 9-12.
    [10]YUE Qun-xing, WEI Fa-jie. New Stochastic Optimization Algorithm——Ant System[J]. Journal of Beijing University of Aeronautics and Astronautics Social Sciences Edition, 2005, 18(4): 5-8.

Catalog

    Article views (1295) PDF downloads (818) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return