留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型聚乙烯醇/聚乙二醇水凝胶热沉性能研究

殷健宝 邢玉明 郝兆龙 王仕淞 王子贤 侯煦

殷健宝,邢玉明,郝兆龙,等. 新型聚乙烯醇/聚乙二醇水凝胶热沉性能研究[J]. 北京航空航天大学学报,2023,49(1):187-194 doi: 10.13700/j.bh.1001-5965.2021.0181
引用本文: 殷健宝,邢玉明,郝兆龙,等. 新型聚乙烯醇/聚乙二醇水凝胶热沉性能研究[J]. 北京航空航天大学学报,2023,49(1):187-194 doi: 10.13700/j.bh.1001-5965.2021.0181
YIN J B,XING Y M,HAO Z L,et al. Performance of a novel polyvinyl alcohol/polyethylene glycol hydrogel for heat sink[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):187-194 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0181
Citation: YIN J B,XING Y M,HAO Z L,et al. Performance of a novel polyvinyl alcohol/polyethylene glycol hydrogel for heat sink[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):187-194 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0181

新型聚乙烯醇/聚乙二醇水凝胶热沉性能研究

doi: 10.13700/j.bh.1001-5965.2021.0181
详细信息
    通讯作者:

    E-mail:haozhaolong@buaa.edu.cn

  • 中图分类号: TK124

Performance of a novel polyvinyl alcohol/polyethylene glycol hydrogel for heat sink

More Information
  • 摘要:

    为研究水凝胶作为热管理技术的可行性和潜力,采用物理循环冷冻法制备一种力学和经济性良好的新型聚乙烯醇(PVA)/聚乙二醇(PEG)复合水凝胶热沉,热沉尺寸为60 mm×60 mm×2 mm,通过表面的水分蒸发来实现自冷。在2712 W/m2热流下进行散热性能探究实验,得到了升温特性、蒸发对流强度变化关系和溶胀变化规律。发现加入2.5%质量分数的PEG减小了随循环冷冻次数增加造成的制备变形,减小了75.53%的含水量衰减,同时使芯片表面控温下降7.53%。根据实验结果计算得到了蒸发换热系数,并研究了热流、厚度和湿度对蒸发散热的影响。通过对水凝胶不同温度和使用情况(4 h连续使用及120 d常温储存)下溶胀率的测定,证明水凝胶具备一定的短时使用可靠性,但对温度的敏感响应并不显著。

     

  • 图 1  水凝胶热沉散热能力测试装置示意图

    Figure 1.  Schematic diagram of test device for heat dissipation capacity of hydrogel heat sink

    图 2  水凝胶热量平衡示意图

    Figure 2.  Schematic diagram of hydrogel heat balance

    图 3  1次循环冷冻后的实验样品及2712 W/m2热流下芯片表面的升温曲线

    Figure 3.  Physical image of experimental sample after a cycle of freezing, and heating curves of chip surface with heat flow of 2712 W/m2

    图 4  实际芯片升温曲线的测定

    Figure 4.  Measurement of actual chip heating curve

    图 5  4次循环冷冻的水凝胶实物图和对芯片表面的控温效果对比

    Figure 5.  Physical picture of frozen hydrogel with four cycles, and temperature control effect of these cycles on chip surface

    图 6  高温自然对流散热的实验样品图与对应升温曲线

    Figure 6.  Experimental sample diagram and corresponding heating curves of high temperature natural convection heat dissipation

    图 7  不同湿度条件下的水凝胶升温曲线

    Figure 7.  Hydrogel heating curves under different humidity conditions

    图 8  水凝胶溶胀率随循环次数和温度的变化曲线

    Figure 8.  Variation curves of hydrogel swelling ratio with cycle numbers and temperature

    图 9  不同条件下水凝胶的连续升温曲线

    Figure 9.  Continuous heating curves of hydrogel under different conditions

    表  1  水凝胶制备材料

    Table  1.   Materials for hydrogel preparation

    水凝胶PVA/gPEG/g去离子水/mL
    P10/010090
    P10/2.5102.587.5
    P5/2.552.592.5
    下载: 导出CSV

    表  2  不同参数下PVA/PEG复合水凝胶的蒸发换热系数及水凝胶的散热贡献率

    Table  2.   Evaporation heat transfer coefficient of PVA/PEG composite hydrogel with different parameters, and contribution of hydrogel to heat dissipation

    热流密度/
    ( W·m−2)
    水凝胶
    厚度/mm
    蒸发换热
    系数he
    /(W·(m2·K)−1)
    $\dfrac{q_{{\rm{sens}}}+q_{{\rm{evap}}}}{q}$/%
    760321.6052.39
    1280325.5750.85
    2000324.9048.82
    2712330.2158.32
    3640342.2965.28
    2712243.0162.30
    2712831.0663.04
    下载: 导出CSV
  • [1] 唐广笛, 张天昊, 章桐. 面向大功率芯片散热的电动汽车电机控制器结构优化[J]. 电机与控制应用, 2020, 47(10): 80-84.

    TANG G D, ZHANG T H, ZHANG T. Structural optimization of motor controller in electric vehicle aiming at high-power chips cooling[J]. Electric Machines and Control Application, 2020, 47(10): 80-84(in Chinese).
    [2] 侯煦, 邢玉明, 郝兆龙, 等. 高碳醇/膨胀石墨复合相变热沉多目标优化研究[J]. 北京航空航天大学学报, 2021, 47(9): 1866-1873.

    HOU X, XING Y M, HAO Z L, et al. Multi-objective geometric optimization of a high alcohol/expanded graphite composite PCM based heat sink[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1866-1873 (in Chinese).
    [3] 孙潇. 用于芯片散热的蒸发冷却技术[D]. 上海: 东华大学, 2011: 1-5.

    SUN X. Evaporative cooling technology used for chip cooling[D]. Shanghai: Donghua University, 2011: 1-5 (in Chinese).
    [4] HOLLOWAY J L, LOWMAN A M, PALMESE G R. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels[J]. Soft Matter, 2012, 9(3): 826-833.
    [5] LEE W F, CHIU R J. Investigation of charge effects on drug release behavior for ionic thermosensitive hydrogels[J]. Materials Science and Engineering:C, 2002, 20(1/2): 161-166.
    [6] ROTZETTER A C C, SCHUMACHER C M, BUBENHOFER S B, et al. Thermoresponsive polymers: Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings[J]. Advanced Materials, 2012, 24(39): 5277-5277. doi: 10.1002/adma.201290239
    [7] HUANG Z, ZHANG X, ZHOU M, et al. Bio-inspired passive skin cooling for handheld microelectronics devices[J]. Journal of Electronic Packaging, 2012, 134(1): 014501. doi: 10.1115/1.4005908
    [8] CUI S, HU Y, HUANG Z, et al. Cooling performance of bio-mimic perspiration by temperature-sensitive hydrogel[J]. International Journal of Thermal Sciences, 2014, 79: 276-282. doi: 10.1016/j.ijthermalsci.2014.01.015
    [9] PU S, SU J, LI L, et al. Bioinspired sweating with temperature sensitive hydrogel to passively dissipate heat from high-end wearable electronics[J]. Energy Conversion and Management, 2018, 180: 747-756.
    [10] YI G B, HUANG Y W, XIONG F H, et al. Preparation and swelling behaviors of rapid responsive semi-IPN NaCMC/PNIPAm hydrogels[J]. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(6): 1073-1078. doi: 10.1007/s11595-011-0365-3
    [11] MENG H, LI G Q. Reversible switching transitions of stimuli-responsive shape changing polymers[J]. Journal of Materials Chemistry A, 2013, 1(27): 7838-7865. doi: 10.1039/c3ta10716g
    [12] HUBBARD A M, CUI W, HUANG Y, et al. Hydrogel/elastomer laminates bonded via fabric interphases for stimuli-responsive actuators[J]. Matter, 2019, 1(3): 674-689. doi: 10.1016/j.matt.2019.04.008
    [13] 罗加祺. 过渡金属碳/氮化物(MXene)-聚合物纳米复合材料的制备及其性能研究[D]. 北京: 北京化工大学, 2020: 35-40.

    LUO J Q. Preparation and properties of transition metal carbide/nitride(MXene)-polymer nanocomposites[D]. Beijing: Beijing University of Chemical Technology, 2020: 35-40 (in Chinese).
    [14] 张林, 张娜, 曹秋枫. PVA水凝胶制备方法研究进展[J]. 化工时刊, 2018, 32(2): 29-32. doi: 10.16597/j.cnki.issn.1002-154x.2018.02.009

    ZHANG L, ZHANG N, CAO Q F. Research progress in preparation methods of PVA hydrogels[J]. Chemical Industry Times, 2018, 32(2): 29-32(in Chinese). doi: 10.16597/j.cnki.issn.1002-154x.2018.02.009
    [15] 李东. 聚乙烯醇水凝胶薄膜的力学性能调控及应用[D]. 大连: 大连理工大学, 2020: 35-45.

    LI D. Mechanical property modulation and application of poly(vinyl alcohol) hydrogel membrane[D]. Dalian: Dalian University of Technology, 2020: 35-45(in Chinese).
    [16] PEPPAS N A, MERRILL E W. Differential scanning calorimetry of crystallized PVA hydrogels[J]. Journal of Applied Polymer Science, 1976, 20(6): 1457-1465. doi: 10.1002/app.1976.070200604
    [17] ZAMENGO M, MORIKAWA J. Evaluation of cooling ability for a novel heat sink made of polyvinyl alcohol hydrogel[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118523. doi: 10.1016/j.ijheatmasstransfer.2019.118523
    [18] QIU M, CHEN D, SHEN C, et al. Platelet-rich plasma-loaded poly(D, L-lactide)-poly(ethylene glycol)-poly(D, L-lactide) hydrogel dressing promotes full-thickness skin wound healing in a rodent model[J]. International Journal of Molecular Sciences, 2016, 17(7): 1001. doi: 10.3390/ijms17071001
    [19] CHANG C F, CHANG C Y, TSAI W T, et al. Adsorption equilibrium of polyethylene glycol in the copper electroplating solution on activated carbon[J]. Journal of Colloid and Interface, 2000, 232(1): 207-209. doi: 10.1006/jcis.2000.7180
    [20] 杜倩雯, 陈琳, 钟春燕, 等. BC/PVA/PEG增强型复合水凝胶的制备及其表征[J]. 广东化工, 2014, 41(16): 17-18. doi: 10.3969/j.issn.1007-1865.2014.16.009

    DU Q W, CHEN L, ZHONG C Y, et al. Production and characterization of bacterial cellulose-poly (vinyl aicohol)-poly (ethylene glycol) enhanced nanocomposite hydrogel[J]. Guangdong Chemical Industry, 2014, 41(16): 17-18(in Chinese). doi: 10.3969/j.issn.1007-1865.2014.16.009
    [21] 周学华. 高强度多孔PVA水凝胶的制备及其性能的研究[D]. 北京: 中国石油大学, 2016: 20-30.

    ZHOU X H. Preparation of polyvinyl alcohol porous hydrogel with high strength and well ciprofloxacin release efficiency[D]. Beijing: China University of Petroleum, 2016: 20-30 (in Chinese).
    [22] MA K X, ZHANG X Z, YANG Y Y, et al. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels[J]. Langmuir, 2001, 17(20): 6094-6099. doi: 10.1021/la010105v
    [23] 张梅, 那莹, 姜振华. 接枝共聚法制备聚乙二醇(PEG)/聚乙烯醇(PVA)高分子固-固相变材料性能研究[J]. 高等学校化学学报, 2005, 26(1): 181-185. doi: 10.3321/j.issn:0251-0790.2005.01.031

    ZHANG M, NA Y, JIANG Z H. Preparation and properties of polymeric solid-solid phase change materials of polyethylene glycol(PEG)/poly(vinyl alcohol)(PVA) copolymers by graft copolymerization[J]. Chemical Journal of Chinese Universities, 2005, 26(1): 181-185(in Chinese). doi: 10.3321/j.issn:0251-0790.2005.01.031
    [24] 孙大辉, 崔艳, 疏官胜, 等. 聚乙二醇(PEG)/聚乙烯醇(PVA)温敏水凝胶的制备及温敏特性研究[C]//2009全国功能材料科技与产业高层论坛, 2009: 355-358.

    SUN D H, CUI Y, SHU G S, et al. Study on preparation and sensitive properties of polyethylene glycol (PEG)/polyvinyl alcohol (PVA) thermo-sensitive hydrogel[C]//Proceedings of 2009 China Functional Materials Technology and Industry Forum, 2009: 355-358 (in Chinese).
    [25] 徐天宇. 聚乙烯醇/聚乙二醇新型温敏水凝胶的制备及性能研究[D]. 长春: 吉林大学, 2012: 15-30.

    XU T Y. Study on preparation and sensitive properties of polyethylene glycol (PEG)/polyvinyl alcohol (PVA) thermo-sensitive hydrogel[D]. Changchun: Jilin University, 2012: 15-30 (in Chinese).
    [26] PEPPAS N A, MERRILL E W. Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks[J]. Journal of Applied Polymer Science, 1977, 21(7): 1763-1770. doi: 10.1002/app.1977.070210704
    [27] MORI Y, TOKURA H, YOSHIKAWA M. Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their applications[J]. Journal of Materials Science, 1997, 32(2): 491-496. doi: 10.1023/A:1018586307534
    [28] KOSKI A, YIM K, SHIVKUMAR S. Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Materials Letters, 2004, 58(3-4): 493-497. doi: 10.1016/S0167-577X(03)00532-9
    [29] AGU D L J D, BADANO J M, RINTOUL I. Kinetics and thermodynamics of swelling and dissolution of PVA gels obtained by freeze-thaw technique[J]. Materials Chemistry and Physics, 2018, 216: 14-16. doi: 10.1016/j.matchemphys.2018.05.038
    [30] SIROUSAZAR M, YARI M. Dehydration kinetics of polyvinyl alcohol hydrogel wound dressings during wound healing process[J]. Chinese Journal of Polymer Science, 2010, 28(4): 121-128.
    [31] POTKONJAK B, JOVANOVIC J, STANKOVIC B, et al. Comparative analyses on isothermal kinetics of water evaporation and hydrogel dehydration by a novel nucleation kinetics model[J]. Chemical Engineering Research & Design Transactions of the Institution of Chemical Engineers, 2015, 100: 323-330.
    [32] THEODORE L, BERGMAN L, ADRIENNE S, et al. Fundamentals of heat and mass transfer[M]. 7th ed. Hoboken: Wiley Press, 2011: 594-625.
    [33] MACHIDA Y, KUROKI S, KANEKIYO M, et al. A structural study of water in a poly(vinyl alcohol) gel by 17O NMR spectroscopy[J]. Journal of Molecular Structure, 2000, 554(1): 81-90. doi: 10.1016/S0022-2860(00)00561-5
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  66
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 录用日期:  2021-06-04
  • 网络出版日期:  2021-07-01
  • 整期出版日期:  2023-01-30

目录

    /

    返回文章
    返回
    常见问答