留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声学超表面抑制高速边界层内宽频不稳定模态研究

王蔚彰 孔维萱 严昊 赵瑞

王蔚彰,孔维萱,严昊,等. 声学超表面抑制高速边界层内宽频不稳定模态研究[J]. 北京航空航天大学学报,2023,49(2):388-396 doi: 10.13700/j.bh.1001-5965.2021.0235
引用本文: 王蔚彰,孔维萱,严昊,等. 声学超表面抑制高速边界层内宽频不稳定模态研究[J]. 北京航空航天大学学报,2023,49(2):388-396 doi: 10.13700/j.bh.1001-5965.2021.0235
WANG W Z,KONG W X,YAN H,et al. Acoustic metasurfaces for stabilization of broadband unstable modes in high speed boundary layer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):388-396 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0235
Citation: WANG W Z,KONG W X,YAN H,et al. Acoustic metasurfaces for stabilization of broadband unstable modes in high speed boundary layer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):388-396 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0235

声学超表面抑制高速边界层内宽频不稳定模态研究

doi: 10.13700/j.bh.1001-5965.2021.0235
基金项目: 国家自然科学基金 (11872116,11991030,11991033);火箭创新预研基金
详细信息
    作者简介:

    王蔚彰等:声学超表面抑制高速边界层内宽频不稳定模态研究 9

    通讯作者:

    E-mail:zr@bit.edu.cn

  • 中图分类号: V211.3;O354.4

Acoustic metasurfaces for stabilization of broadband unstable modes in high speed boundary layer

Funds: National Natural Science Foundation of China (11872116,11991030,11991033); Rocket Innovation Research Fund
More Information
  • 摘要:

    以声学超表面为研究对象,使用线性稳定性理论(LST),研究了声学超表面导纳相位与幅值对超声速平板边界层内宽频不稳定模态的影响规律。结果表明:当导纳相位$ \theta $接近0.5$ \text{π}$时,第1模态被抑制的同时第2模态会被激发,且在较低频率范围内导纳幅值的增大能够使第1模态更加稳定;当导纳相位$ \theta $接近$ \text{π} $时,可抑制第2模态但同时激发第1模态;整体上,导纳幅值越大,对不稳定模态的抑制或激发效果越明显。在此基础上,结合缝隙几何参数对导纳的影响,提出一种可实现性宽频抑制方案,通过分段设计声学超表面微结构的几何尺寸,实现了同时抑制第1模态和高频第2模态的目标,并使用$ {\mathrm{e}}^{N} $方法验证了转捩抑制效果。

     

  • 图 1  缝隙型声学超表面的示意图

    Figure 1.  Schematic diagram of the aperture type acoustic metasurface

    图 2  光滑平板表面不稳定模态的增长率

    Figure 2.  Growth rates of unstable modes on smooth solid walls

    图 3  声学超表面导纳相位与幅值对不稳定模态增长率的影响

    Figure 3.  Effects of admittance phase and amplitude of acoustic metasurface on the growth rates of unstable modes

    图 4  不同导纳相位对第1模态增长率的影响

    Figure 4.  Effects of admittance phase on the growth rates of the first mode

    图 5  孔隙率对导纳相位和导纳幅值的影响

    Figure 5.  Effect of n on admittance phase and amplitude

    图 6  宽深比对导纳相位和导纳幅值的影响

    Figure 6.  Effect of Ar on admittance phase and amplitude

    图 7  深度对导纳相位与导纳幅值的影响

    Figure 7.  Effect of H on admittance phase and amplitude

    图 8  缝隙参数筛选流程

    Figure 8.  Flow chart of slit parameter screening

    图 9  不同频率下扰动模态在声学超表面与光滑表面的增长率对比

    Figure 9.  Growth rates of unstable modes at different frequencies on acoustic metasurface and smooth surface

    图 10  声学超表面与光滑表面的N值曲线对比

    Figure 10.  Comparisons of N-value curves of acoustic metasurface and smooth surface

    图 11  声学超表面与光滑表面N值包络线对比

    Figure 11.  Comparisons of N-value envelopments of acoustic metasurface and smooth surface

    表  1  不同 ${\boldsymbol{x}} $ 位置处的最优缝隙参数

    Table  1.   Optimal gap parameters at different ${\boldsymbol{x}} $ positions

    流向位置x/mH/mmnAr
    0.100.280.120.7
    0.150.370.120.7
    0.200.440.130.7
    0.250.510.130.7
    0.300.570.140.7
    0.350.630.140.7
    0.400.680.140.7
    下载: 导出CSV
  • [1] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337.

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337(in Chinese).
    [2] FEDOROV A V, MALMUTH N D, RASHEED A, et al. Stabilization of hypersonic boundary layers by porous coatings[J]. AIAA Journal, 2001, 39(4): 605-610. doi: 10.2514/2.1382
    [3] RILEY Z B, DESHMUKH R, MILLER B A, et al. Characterization of structural response to hypersonic boundary-layer transition[J]. AIAA Journal, 2016, 54(8): 2418-2431. doi: 10.2514/1.J054607
    [4] 李锋, 解少飞, 毕志献, 等. 高超声速飞行器中若干气动难题的实验研究[J]. 现代防御技术, 2014, 42(5): 1-7. doi: 10.3969/j.issn.1009-086x.2014.05.001

    LI F, XIE S F, BI Z X, et al. Experimental study of several on aerodynamic problems on hypersonic vehicles[J]. Modern Defence Technology, 2014, 42(5): 1-7(in Chinese). doi: 10.3969/j.issn.1009-086x.2014.05.001
    [5] MORKOVIN M, RESHOTKO E, HERBERT T. Transition in open flow systems-a reassessment[J]. Bulletin of the American Physical Society, 1994, 39(9): 1882.
    [6] RESHOTKO E. Boundary layer instability, transition and control[C]// 32nd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1994: 1.
    [7] WAGNER A, KUHN M, MARTINEZ SCHRAMM J, et al. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon–carbon material with random microstructure[J]. Experiments in Fluids, 2013, 54(10): 1-10.
    [8] ZHAO R, LIU T, WEN C Y, et al. Impedance-near-zero acoustic metasurface for hypersonic boundary-layer flow stabilization[J]. Physical Review Applied, 2019, 11(4): 044015. doi: 10.1103/PhysRevApplied.11.044015
    [9] MA Y B, ZHONG X L. Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions[J]. Journal of Fluid Mechanics, 2003, 488: 31-78. doi: 10.1017/S0022112003004786
    [10] FEDOROV A, TUMIN A. High-speed boundary-layer instability: Old terminology and a new framework[J]. AIAA Journal, 2011, 49(8): 1647-1657. doi: 10.2514/1.J050835
    [11] BITTER N P, SHEPHERD J E. Stability of highly cooled hypervelocity boundary layers[J]. Journal of Fluid Mechanics, 2015, 778: 586-620. doi: 10.1017/jfm.2015.358
    [12] MACK L M. Boundary-layer linear stability theory, N84-33757[R]. [S.l]: The NASA Astrophysis Data System, 1984: 23-34.
    [13] RASHEED A, HORNUNG H G, FEDOROV A V, et al. Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface[J]. AIAA Journal, 2002, 40(3): 481-489. doi: 10.2514/2.1671
    [14] 涂国华, 陈坚强, 袁先旭, 等. 多孔表面抑制第二模态失稳的最优开孔率和孔半径分析[J]. 空气动力学学报, 2018, 36(2): 273-278.

    TU G H, CHEN J Q, YUAN X X, et al. Optimal porosity and pore radius of porous surfaces for damping the second-mode instability[J]. Acta Aerodynamica Sinica, 2018, 36(2): 273-278(in Chinese).
    [15] ZHAO R, LIU T, WEN C Y, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J]. AIAA Journal, 2018, 56(8): 2942-2946. doi: 10.2514/1.J057272
    [16] ZHAO R, ZHANG X X, WEN C Y. Theoretical modeling of porous coatings with simple microstructures for hypersonic boundary-layer stabilization[J]. AIAA Journal, 2019, 58(2): 981-986.
    [17] ZHAO R, WEN C Y, LONG T H, et al. Spatial direct numerical simulation of the hypersonic boundary-layer stabilization using porous coatings[J]. AIAA Journal, 2019, 57(11): 5061-5065. doi: 10.2514/1.J058467
    [18] 郭启龙, 涂国华, 陈坚强, 等. 横向矩形微槽对高超边界层失稳的控制作用[J]. 航空动力学报, 2020, 35(1): 135-143. doi: 10.13224/j.cnki.jasp.2020.01.016

    GUO Q L, TU G H, CHEN J Q, et al. Control of hypersonic boundary layer instability by transverse rectangular micro-cavities[J]. Journal of Aerospace Power, 2020, 35(1): 135-143(in Chinese). doi: 10.13224/j.cnki.jasp.2020.01.016
    [19] TU G H, CHEN J F, WAN B B, et al. Investigation on correlation between wind tunnel and flight for boundary layer stability and transition of MF-1 blunt cone[J]. Scientia Sinica, 2019, 49(12): 124701.
    [20] 刘强, 涂国华, 罗振兵, 等. 延迟高超声速边界层转捩技术研究进展[J]. 航空学报, 2022, 43(7): 25357. doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207001

    LIU Q, TU G H, LUO Z B, et al. Progress in hypersonic boundary layer transition delay control[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 25357(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207001
    [21] FEDOROV A, SHIPLYUK A, MASLOV A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics, 2003, 479: 99-124. doi: 10.1017/S0022112002003440
    [22] WANG X W, ZHONG X L. The stabilization of a hypersonic boundary layer using local sections of porous coating[J]. Physics of Fluids, 2012, 24(3): 034105. doi: 10.1063/1.3694808
    [23] WANG X W, ZHONG X L. Phase angle of porous coating admittance and its effect on boundary-layer stabilization[C]// 41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011: 3080.
    [24] TIAN X, ZHAO R, LONG T, et al. Reverse design of ultrasonic absorptive coating for the stabilization of mack modes[J]. AIAA Journal, 2019, 57(6): 2264-2269. doi: 10.2514/1.J058105
    [25] 赵瑞, 严昊, 席柯, 等. 声学超表面抑制第一模态研究[J]. 航空科学技术, 2020, 31(11): 104-112. doi: 10.19452/j.issn1007-5453.2020.11.013

    ZHAO R, YAN H, XI K, et al. Research on acoustic metasurfaces for the suppression of the first mode[J]. Aeronautical Science & Technology, 2020, 31(11): 104-112(in Chinese). doi: 10.19452/j.issn1007-5453.2020.11.013
    [26] MACK L M. Linear stability theory and the problem of supersonic boundary- layer transition[J]. AIAA Journal, 1975, 13(3): 278-289. doi: 10.2514/3.49693
    [27] MALIK M R. Numerical methods for hypersonic boundary layer stability[J]. Journal of Computational Physics, 1990, 86(2): 376-413. doi: 10.1016/0021-9991(90)90106-B
    [28] EL-HADY N M. Nonparallel stability of three-dimensional compressible boundary layers. Part 1: Stability analysis: NASA-CR-3245 [R]. Washington, D. C. : National Aeronautics and Space Administration, 1980: 1-38.
    [29] MALIK M, MALIK M. Boundary-layer transition prediction toolkit[C]//28th Fluid Dynamics Conference. Reston: AIAA, 1997: 1904.
    [30] 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357-372.

    LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357-372(in Chinese).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  86
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 录用日期:  2021-06-20
  • 网络出版日期:  2021-07-13
  • 整期出版日期:  2023-02-28

目录

    /

    返回文章
    返回
    常见问答