留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FBMC/OQAM系统中改进的峰均比抑制方法

李磊 薛伦生 陈西宏 邹兵

李磊,薛伦生,陈西宏,等. FBMC/OQAM系统中改进的峰均比抑制方法[J]. 北京航空航天大学学报,2023,49(2):457-463 doi: 10.13700/j.bh.1001-5965.2021.0254
引用本文: 李磊,薛伦生,陈西宏,等. FBMC/OQAM系统中改进的峰均比抑制方法[J]. 北京航空航天大学学报,2023,49(2):457-463 doi: 10.13700/j.bh.1001-5965.2021.0254
LI L,XUE L S,CHEN X H,et al. Improved peak-to-average ratio reduction method in FBMC/OQAM system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):457-463 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0254
Citation: LI L,XUE L S,CHEN X H,et al. Improved peak-to-average ratio reduction method in FBMC/OQAM system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):457-463 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0254

FBMC/OQAM系统中改进的峰均比抑制方法

doi: 10.13700/j.bh.1001-5965.2021.0254
基金项目: 国家自然科学基金(61671468)
详细信息
    作者简介:

    李磊:男,硕士研究生。主要研究方向:滤波器组多载波系统峰均比抑制技术研究

    薛伦生:男,博士,副教授,硕士生导师。主要研究方向:滤波器组多载波系统关键技术

    陈西宏:男,博士,教授,博士生导师。主要研究方向:散射通信、多载波通信技术

    通讯作者:

    E-mail:xuelunshengl@163.com

  • 中图分类号: TN914

Improved peak-to-average ratio reduction method in FBMC/OQAM system

Funds: National Natural Science Foundation of China (61671468)
More Information
  • 摘要:

    针对偏移正交幅度调制的滤波器组多载波(FBMC-OQAM)系统中峰值平均功率比(PAPR)过高会引起失真且对信道估计性能造成影响的缺点,提出了一种基于相位旋转的干扰消除法(ICM-P)。该方法产生不同的相位序列,与传输数据相乘得到多组数据序列,分别计算其PAPR,并选择PAPR最低的一组进行传输。仿真验证与分析表明:所提方法能有效降低系统过高的峰值平均功率比,误码率不高,且信道估计性能较原ICM方法没有明显下降。

     

  • 图 1  FBMC/OQAM系统框图

    Figure 1.  System block diagram of FBMC/OQAM

    图 2  ICM-1导频序列结构

    Figure 2.  Frame configuration for ICM-1

    图 3  ICM-2导频序列结构

    Figure 3.  Frame configuration for ICM-2

    图 4  ICM-3导频序列结构

    Figure 4.  Frame configuration for ICM-3

    图 5  ICM-NEW导频序列结构

    Figure 5.  Frame configuration for ICM-NEW

    图 6  不同方法的CCDF曲线

    Figure 6.  CCDF of different methods

    图 7  不同子载波的CCDF曲线

    Figure 7.  CCDF of different subcarriers

    图 8  不同子载波的误码率曲线

    Figure 8.  Bit error rate of different subcarriers

    图 9  不同相位组数的误码率曲线

    Figure 9.  Bit error rate of different phase groups

    图 10  不同方法的NMSE曲线

    Figure 10.  NMSE of different methods

    表  1  参数设置

    Table  1.   Fundamental parameters of simulations

    参数数值
    原型滤波器类型IOTA,抽头数4
    符号数40
    子载波数64,256,1024
    相位旋转因子组数4,8,16
    信道编码卷积码
    信道路径时延/µs[0,2,4,7,11,14]
    信道平均增益/dB[0,−7,−15,−22,−24,−19]
    下载: 导出CSV
  • [1] NISSEL R, SCHWARZ S, RUPP M. Filter bank multicarrier modulation schemes for future mobile communications[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8): 1768-1782. doi: 10.1109/JSAC.2017.2710022
    [2] CAUS M, PÉREZ-NEIRA A I, BAS J, et al. New satellite random access preamble design based on pruned DFT-spread FBMC[J]. IEEE Transactions on Communications, 2020, 68(7): 4592-4604. doi: 10.1109/TCOMM.2020.2985977
    [3] RAVINDRAN R, VISWAKUMAR A. Performance evaluation of 5G waveforms: UFMC and FBMC-OQAM with cyclic prefix-OFDM system[C]//9th International Conference on Advances in Computing and Communication. Piscataway: IEEE Press, 2019: 6-10.
    [4] WANG Y X, SONG R, WANG S N, et al. Study of the prototype filter and bit error rate for the filter bank multi-carrier system[C]//5th International Conference on Computer and Communication Systems. Piscataway: IEEE Press, 2020: 816-820.
    [5] GALDINO I, ZAKARIA R, RUYET D L, et al. Short prototype filter design for OQAM-FBMC modulation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 9163-9167. doi: 10.1109/TVT.2020.2999732
    [6] TIAN Y, CHEN D, LUO K, et al. Prototype filter design to minimize stopband energy with constraint on channel estimation performance for OQAM/FBMC systems[J]. IEEE Transactions on Broadcasting, 2019, 65(2): 260-269. doi: 10.1109/TBC.2018.2847453
    [7] YANG F, WANG Y, DING L H, et al. An improved equalization with real interference prediction scheme of the FBMC/OQAM system[J]. China Communications, 2021, 18(1): 120-129. doi: 10.23919/JCC.2021.01.011
    [8] REN D F, LI J, LU G Y, et al. Per-subcarrier RLS adaptive channel estimation combined with channel equalization for FBMC/OQAM systems[J]. IEEE Wireless Communications Letters, 2020, 9(7): 1036-1040.
    [9] ABENOV R R, POKAMESTOV D A, ROGOZHNIKOV E V, et al. FBMC/OQAM equalization scheme with linear interpolation[C]// International Multi-Conference on Engineering, Computer and Information Sciences. Piscataway: IEEE Press, 2019: 130-133.
    [10] LIU W F, SCHWARZ S, RUPP M, et al. Pairs of pilots design for preamble-based channel estimation in OQAM/FBMC systems[J]. IEEE Wireless Communications Letters, 2021, 10(3): 488-492. doi: 10.1109/LWC.2020.3035388
    [11] NISAR M D, ANJUM W, JUNAID F. Preamble design for improved noise suppression in FBMC-OQAM channel estimation[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1471-1475.
    [12] KOFIDIS E. On optimal multi-symbol preambles for highly frequency selective FBMC/OQAM channel estimation[C]//International Symposium on Wireless Communication Systems. Piscataway: IEEE Press, 2015: 556-560.
    [13] KONG D J, ZHENG X, YANG Y L, et al. A novel DFT-based scheme for PAPR reduction in FBMC/OQAM systems[J]. IEEE Wireless Communications Letters, 2021, 10(1): 161-165. doi: 10.1109/LWC.2020.3024179
    [14] LV S Y, ZHAO J H, YANG L H, et al. Genetic algorithm based bilayer PTS scheme for peak-to-average power ratio reduction of FBMC/OQAM signal[J]. IEEE Access, 2020, 8: 17945-17955. doi: 10.1109/ACCESS.2020.2967846
    [15] NA D J, CHOI K. DFT spreading-based low PAPR FBMC with embedded side information[J]. IEEE Transactions on Communications, 2020, 68(3): 1731-1745. doi: 10.1109/TCOMM.2019.2918526
    [16] SEO B, SIM D, LEE T, et al. Efficient time synchronization method with adaptive resource configuration for FBMC systems[J]. IEEE Transactions on Communications, 2020, 68(9): 5563-5574. doi: 10.1109/TCOMM.2020.3001118
    [17] THEIN C, FUHRWERK M, PEISSIG J. Frequency-domain processing for synchronization and channel estimation in OQAM-OFDM systems[C]//IEEE 14th Workshop on Signal Processing Advances in Wireless Communications. Piscataway: IEEE Press, 2013: 634-638.
    [18] CHEN D, WANG W, JIANG T. New multicarrier modulation for satellite-ground transmission in space information networks[J]. IEEE Network, 2020, 34(1): 101-107. doi: 10.1109/MNET.2019.1900058
    [19] HU S, WU G, LI T, et al. Preamble design with ICI cancellation for channel estimation in OFDM/OQAM system[J]. IEICE Transactions on Communications, 2010, 93(1): 211-214.
    [20] KANG S W, CHANG K H. A novel channel estimation scheme for OFDM/OQAM‐IOTA system[J]. ETRI Journal, 2007, 29(4): 430-436. doi: 10.4218/etrij.07.0106.0184
    [21] YOON T, IM S, HWANG S, et al. Pilot structure for high data rate in OFDM/OQAM-IOTA system[C]//Proceedings of IEEE Vehicular Technology Conference. Piscataway: IEEE Press, 2008: 1-5.
    [22] QIU S F, XUE L S, WU P. Improved interference cancelation channel estimation method in OFDM/OQAM system[J]. Mathematical Problems in Engineering, 2018, 2018: 7076967.
    [23] HE Z M, ZHOU L Y, CHEN Y D, et al. Low-complexity PTS scheme for PAPR reduction in FBMC-OQAM systems[J]. IEEE Communications Letters, 2018, 22(11): 2322-2325. doi: 10.1109/LCOMM.2018.2871263
    [24] SIOHAN P, SICLET C, LACAILLE N. Analysis and design of OFDM/OQAM systems based on filterbank theory[J]. IEEE Transactions on Signal Processing, 2002, 50(5): 1170-1183. doi: 10.1109/78.995073
    [25] KOFIDIS E, KATSELIS D, RONTOGIANNIS A, et al. Preamble-based channel estimation in OFDM/OQAM systems: A review[J]. Signal Processing, 2013, 93(7): 2038-2054. doi: 10.1016/j.sigpro.2013.01.013
    [26] LIU W F, RUPP M, SCHWARZ S, et al. Block-wise preamble design in OQAM/FBMC systems with interference cancellation[J]. IEEE Communications Letters, 2021, 25(3): 1015-1018.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  74
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 录用日期:  2021-11-01
  • 网络出版日期:  2021-11-16
  • 整期出版日期:  2023-02-28

目录

    /

    返回文章
    返回
    常见问答