留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动力系统布置对于翼身融合飞机气动特性的影响

贾媛 杨玉腾 吴江浩

贾媛,杨玉腾,吴江浩. 动力系统布置对于翼身融合飞机气动特性的影响[J]. 北京航空航天大学学报,2023,49(5):1156-1165 doi: 10.13700/j.bh.1001-5965.2021.0370
引用本文: 贾媛,杨玉腾,吴江浩. 动力系统布置对于翼身融合飞机气动特性的影响[J]. 北京航空航天大学学报,2023,49(5):1156-1165 doi: 10.13700/j.bh.1001-5965.2021.0370
JIA Y,YANG Y T,WU J H. Effect of powertrain arrangement on aerodynamic characteristics of blended-wing-body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1156-1165 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0370
Citation: JIA Y,YANG Y T,WU J H. Effect of powertrain arrangement on aerodynamic characteristics of blended-wing-body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1156-1165 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0370

动力系统布置对于翼身融合飞机气动特性的影响

doi: 10.13700/j.bh.1001-5965.2021.0370
详细信息
    通讯作者:

    E-mail:buaawjh@buaa.edu.cn

  • 中图分类号: V221.3

Effect of powertrain arrangement on aerodynamic characteristics of blended-wing-body aircraft

More Information
  • 摘要:

    为探究风扇和核心机对于巡航气动特性的共同影响,以350座的翼身融合布局客机为研究对象,采用改变核心机展向位置,在此基础上改变动力系统弦向位置和展向位置的方法进行研究。研究结果表明:巡航状态下,核心机位置对于整流罩表面压力分布和飞机气动特性影响较小,动力系统后掠角为−12°,弦向位置为0.8时,升阻比可达22.39;在动力系统面积和流量不变的情况下,缩小其展向宽度会导致升力减小、阻力减小、升阻比下降、抬头力矩增加;飞机在巡航迎角3.2°下达到最大升阻比22.39,升力系数在起飞迎角10°下达到1.054 1,满足起飞升力系数要求。

     

  • 图 1  BWB-350客机中心体布置

    Figure 1.  BWB-350 airliner center body arrangement

    图 2  带有边界层吸入的翼身融合飞机

    Figure 2.  Wing-body fusion aircraft with boundary layer suction

    图 3  核心机内部示意图

    Figure 3.  Internal diagram of the core machine

    图 4  分布式推进系统简化示意图

    Figure 4.  Simplified schematic of the distributed propulsion system

    图 5  核心机安装方案

    Figure 5.  Installation schemes of core machine

    图 6  有无核心机构型上表面压力分布对比

    Figure 6.  Comparison of surface pressure distribution on models with and without core mechanism

    图 7  动力系统不同后掠角布置方案

    Figure 7.  Power system with different swept-back angles

    图 8  不同布置方案的上翼面压力分布对比

    Figure 8.  Comparison of pressure distribution on the upper airfoil for different arrangements

    图 9  巡航气动参数随后掠角的变化曲线

    Figure 9.  Variation curves of cruise aerodynamic parameters with swept-back angle

    图 10  动力系统不同弦向位置排布方式

    Figure 10.  Different chord positions of power system

    图 11  动力系统不同弦向位置方案上表面压力分布对比

    Figure 11.  Comparison of surface pressure distribution on different chordal positions for power system

    图 12  巡航气动参数随弦向位置的变化曲线

    Figure 12.  Variation curve of cruise aerodynamic parameters with chordal position

    图 13  动力系统不同展向排布方式

    Figure 13.  Different spanwise configurations of power system

    图 14  动力系统不同展向布置方案上翼面压力分布对比

    Figure 14.  Comparison of airfoil pressure distribution on different spanwise configurations of power system

    图 15  不同方案各特征截面翼型压力分布对比

    Figure 15.  Comparison of pressure distribution in each characteristic section airfoil

    图 16  巡航气动特性曲线

    Figure 16.  Cruise aerodynamic characteristics curves

    图 17  起飞气动特性曲线

    Figure 17.  Take-off aerodynamic characteristic curves

    表  1  巡航状态风扇系统参数

    Table  1.   Fan system parameters of cruise state

    参数数值
    进气道进口面积/m214 800
    尾喷口出口面积/m211 000
    尾喷口出口总温/K0.85
    质量流量/(kg·s−11620
    整流罩长度/m7.939
    下载: 导出CSV

    表  2  起飞状态风扇系统参数

    Table  2.   Fan system parameters of takeoff state

    参数数值
    进气道进口面积/m224.8
    尾喷口出口面积/m213.53
    尾喷口出口总温/K322.5
    质量流量/(kg·s−14362
    整流罩长度/m7.939
    下载: 导出CSV

    表  3  巡航状态核心机参数

    Table  3.   Core parameters of cruise state

    参数数值
    进气道进口面积/m21.46
    尾喷口出口面积/m22
    尾喷口出口总温/K710
    质量流量/(kg·s−195.5
    整流罩长度/m7.939
    下载: 导出CSV

    表  4  起飞状态核心机参数

    Table  4.   Core parameters of takeoff state

    参数数值
    进气道进口面积/m21.46
    尾喷口出口面积/m22
    尾喷口出口总温/K820
    质量流量/(kg·s−1256.92
    整流罩长度/m7.939
    下载: 导出CSV

    表  5  不同${\boldsymbol{y}}_{{\bf{max}} }^ {\boldsymbol{+}}$网格的计算结果比较(Ma=0.85, α=3.2°)

    Table  5.   Comparison of calculation results of different ${\boldsymbol{y}}_{{\bf{max}} }^ {\boldsymbol{+}}$ grids (Ma=0.85, α=3.2°)

    网格数量/104第1层网格高度$y_{\max }^ + $CLCd
    3101×10−32000.36690.01775
    3101×10−4200.36400.01812
    3101×10−520.36250.01820
    3101×10−60.20.36270.01821
    下载: 导出CSV

    表  6  不同网格数量计算结果比较(Ma=0.85, α=3.2°)

    Table  6.   Comparison of calculation results of different overall grid densities (Ma=0.85, α=3.2°)

    网格数量/104第1层网格高度$y_{\max }^ + $CLCd
    1001×10−520.35300.01964
    1901×10−520.36070.01882
    3101×10−520.36250.01820
    4301×10−520.36370.01807
    下载: 导出CSV

    表  7  巡航和起飞状态下的计算条件

    Table  7.   Calculation conditions in cruise and take-off

    飞行
    条件
    高度/
    m
    马赫数流量系数
    MFR
    静压/
    Pa
    静温/
    K
    密度/
    (kg·m−3
    起飞00.2651.594101325288.21.2249
    巡航110000.850.71422700216.70.3639
    下载: 导出CSV

    表  8  核心机不同布置方案计算结果

    Table  8.   Calculation results for different core arrangements

    构型CLCdCMK
    Case00.36200.016600.007121.81
    Case10.34280.015610.013621.95
    Case20.33590.015290.019021.98
    Case30.33750.015660.017021.55
    Case40.34130.015660.014921.79
    Case50.34520.015830.012121.81
    下载: 导出CSV

    表  9  动力系统不同后掠角计算结果

    Table  9.   Calculation results for different swept-back angles of power system

    后掠角θ/(°)CLCdCMK
    −300.34440.018570.026118.54
    −200.35980.017420.003020.66
    −120.36680.01638−0.005622.39
    00.35100.015660.006822.42
    4.50.34270.015610.013621.95
    130.32490.016220.022720.03
    220.30770.018260.026316.85
    下载: 导出CSV

    表  10  动力系统不同弦向位置方案计算结果

    Table  10.   Calculation results for different chordal position of power system

    构型$L^*_f $CLCdCMK
    0.750.37230.01883−0.009519.77
    0.780.36880.01742−0.009021.18
    0.800.36680.01638−0.005622.39
    0.820.34210.01459 0.024923.45
    下载: 导出CSV

    表  11  动力系统不同展向布置方案计算结果

    Table  11.   Calculation results for different spanwise configurations of power system

    构型CLCdCMK
    Case A0.36680.01638−0.005622.39
    Case B0.36440.01649−0.002722.09
    Case C0.33400.01549 0.017721.56
    下载: 导出CSV
  • [1] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25. doi: 10.2514/1.9084
    [2] 李晓勇, 李栋成, 周涛. 翼身融合飞机的空气动力学研究进展简介[J]. 民用飞机设计与研究, 2006(4): 1-9. doi: 10.3969/j.issn.1674-9804.2006.04.001

    LI X Y, LI D C, ZHOU T. Brief introduction of aerodynamic research progress of wing-body fusion aircraft[J]. Civil Aircraft Design and Research, 2006(4): 1-9(in Chinese). doi: 10.3969/j.issn.1674-9804.2006.04.001
    [3] 吴峰. 翼身融合体飞机气动外形设计及分析[D]. 南昌: 南昌航空大学, 2017: 1-5.

    WU F. Pneumatic shape design and pneumatic analysis of wing body fusion aircraft[D]. Nanchang: Nanchang Hangkong University, 2017: 1-5 (in Chinese) .
    [4] 闫万方, 吴江浩, 张艳来. 分布式推进关键参数对BWB飞机气动特性影响[J]. 北京航空航天大学学报, 2015, 41(6): 1055-1065. doi: 10.13700/j.bh.1001-5965.2014.0390

    YAN W F, WU J H, ZHANG Y L. Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1055-1065(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0390
    [5] 邢宇. 桁架支撑机翼布局客机总体设计的综合分析与优化[D]. 南京: 南京航空航天大学, 2018: 2-3.

    XING Y. Integrated analysis and optimization in conceptual design of airliners with truss-braced wing configuration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 2-3 (in Chinese).
    [6] SCHETZ J A, HOSDER S, DIPPOLD V, et al. Propulsion and aerodynamic performance evaluation of jet-wing distributed propulsion[J]. Aerospace Science and Technology, 2010, 14(1): 1-10. doi: 10.1016/j.ast.2009.06.010
    [7] HILEMAN J I. Airframe design for silent fuel-efficient aircraft[J]. Journal of Aircraft, 2010, 47(3): 956-969. doi: 10.2514/1.46545
    [8] KAWAI R T , FRIEDMAN D M , SERRANO L. Blended wing body (BWB) boundary layer ingestion (BLI) inlet configuration and system studies: 106478812 [R]. Washington, D. C: National Aeronautics and Space Administration, 2006: 1-26.
    [9] DIEDRICH A, HILEMAN J, TAN D, et al. Multidisciplinary design and optimization of the silent aircraft[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 1323.
    [10] RE R J. Longitudinal aerodynamic characteristics and wing pressure distributions of a blended-wing-body configuration at low and high reynolds numbers: 117728409 [R]. Washington, D. C: National Aeronautics and Space Administration, 2005: 1-103.
    [11] RODRIGUEZ D L. Multidisciplinary optimization method for designing boundary-layer-ingesting inlets[J]. Journal of Aircraft, 2009, 46(3): 883-894. doi: 10.2514/1.38755
    [12] REIST T A, ZINGG D W. Aerodynamic shape optimization of a blended-wing-body regional transport for a short range mission[C]// 31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013: 2414.
    [13] LYU Z J, MARTINS J R R A. Aerodynamic shape optimization of a blended-wing-body aircraft[C]//51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: 283.
    [14] 熊永臻. 分布式动力翼身融合构型气动性能研究[J]. 现代商贸工业, 2019, 40(11): 213-215. doi: 10.19311/j.cnki.1672-3198.2019.11.105

    XIONG Y Z. Study on aerodynamic performance of distributed dynamic wing-body fusion configuration[J]. Modern Business Trade Industry, 2019, 40(11): 213-215(in Chinese). doi: 10.19311/j.cnki.1672-3198.2019.11.105
    [15] 陈青, 昂海松, 胡银彪. 某型无人机的三维重建与气动性能分析[J]. 南昌航空工业学院学报(自然科学版), 2003, 17(4): 32-35.

    CHEN Q, ANG H S, HU Y B. The research and application of unmanned aerial vehicle’s 3D rebuilded method[J]. Journal of Nanchang Institute of Aeronautical Technology, 2003, 17(4): 32-35(in Chinese).
    [16] 戴浩, 余雄庆. 翼身融合飞机参数化几何模型[J]. 飞机设计, 2012, 32(2): 11-14. doi: 10.19555/j.cnki.1673-4599.2012.02.003

    DAI H, YU X Q. Parametric geometric model for blended wing body configuration[J]. Aircraft Design, 2012, 32(2): 11-14(in Chinese). doi: 10.19555/j.cnki.1673-4599.2012.02.003
  • 加载中
图(17) / 表(11)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  57
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 录用日期:  2021-10-11
  • 网络出版日期:  2021-11-09
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答