留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载相控阵天线传热路径设计与热流分析

吴优 孔林 孙强强 张济良

吴优,孔林,孙强强,等. 星载相控阵天线传热路径设计与热流分析[J]. 北京航空航天大学学报,2023,49(5):1127-1134 doi: 10.13700/j.bh.1001-5965.2021.0373
引用本文: 吴优,孔林,孙强强,等. 星载相控阵天线传热路径设计与热流分析[J]. 北京航空航天大学学报,2023,49(5):1127-1134 doi: 10.13700/j.bh.1001-5965.2021.0373
WU Y,KONG L,SUN Q Q,et al. Heat transfer path design and heat flow analysis of satellite phased array antenna[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1127-1134 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0373
Citation: WU Y,KONG L,SUN Q Q,et al. Heat transfer path design and heat flow analysis of satellite phased array antenna[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1127-1134 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0373

星载相控阵天线传热路径设计与热流分析

doi: 10.13700/j.bh.1001-5965.2021.0373
详细信息
    通讯作者:

    E-mail: konglin@charmingglobe.com

  • 中图分类号: V416.5

Heat transfer path design and heat flow analysis of satellite phased array antenna

More Information
  • 摘要:

    为满足星载相控阵天线多热源、高功耗、大功率密度散热问题,设计了由外敷热管和预埋热管组成的十字交叉热管网络,将点热源转化为面热源,同时借助U型热管耦合+Z板与±Y板,强化蜂窝板间换热,通过有限元模型对整星进行热流分析,并进行试验验证。仿真结果表明:U型热管传导了32.9%的相控阵天线热耗,其中66.6%传导至处于阴影区的+Y板,33.4%传导至处于阳照区的−Y板。试验结果表明:整星在长时峰值工作模式下,热管自身温差小于1 ℃,相控阵天线温度满足接口要求。热管网络满足整星长时峰值工作散热能力需求,多次十字交叉热管网络得到验证,U型热管耦合+Z板和±Y板,解决了单个蜂窝板散热能力不足问题。

     

  • 图 1  相控阵天线结构

    Figure 1.  Phased array antenna structure

    图 2  整星坐标系及构型

    Figure 2.  Satellite coordinate system and configuration

    图 3  到达蜂窝板太阳辐照和地球反照平均值

    Figure 3.  Average solar irradiation and albedo reached on satellite panels

    图 4  十字交叉热管网络

    Figure 4.  Crisscross heat pipe network

    图 5  热管网络传热路径

    Figure 5.  Heat transfer path of heat pipe network

    图 6  仿真温度云图

    Figure 6.  Simulation temperature

    图 7  初样星真空热试验

    Figure 7.  Prototype satellite thermal vacuum test

    图 8  +Z板测温点

    Figure 8.  +Z panel temperature measurement points

    图 9  热管网络传热路径测温点

    Figure 9.  Heat pipe network heat transfer path temperature measurement points

    表  1  Ka频段相控阵天线工作模式及热耗

    Table  1.   Ka band phased arrray antenna working mode and heat dissipation W

    类型工作模式热耗
    侧面底面合计
    相控阵收发天线待机/复位/波束关/在轨重构472976
    接收关/发射波束111251163
    接收关/发射波束211251163
    接收关/发射双波束17777254
    接收开/发射波束115654210
    接收开/发射波束215654210
    接收开/发射合波束/双波束196104300
    相控阵发射天线待机/复位/波束关/在轨重构152439
    发射波束110050150
    发射波束210050150
    双波束/合波束17595270
    下载: 导出CSV

    表  2  各蜂窝板面积

    Table  2.   Area of each honeycomb panel m2

    类型总面积延展板面积
    +X0.780.26
    −X0.780.26
    +Y1.30
    −Y1.30
    +Z2.000.58
    −Z2.081.36
    下载: 导出CSV

    表  3  到达蜂窝板地球红外热流密度

    Table  3.   Infrared reached on satellite panels W/m2

    β红外热流密度
    +X+Y+Z−X−Y−Z
    −90°~90°51.043.0183.249.744.00
    下载: 导出CSV

    表  4  热控涂层参数[15-16]

    Table  4.   Surface coating parameters[15-16]

    热控涂层α(寿命初期)α(寿命末期)ε
    KS-ZA0.130.220.92
    OSR0.080.130.79
    下载: 导出CSV

    表  5  各蜂窝板在轨寿命末期平均散热能力(20 ℃)

    Table  5.   Average heat rejection at end of each honeycomb panel’s life ( 20 ℃) W/m2

    热控涂层类型散热能力
    KS-ZA+X295.8
    OSR+Y247.0
    KS-ZA+Z179.9
    −X294.4
    OSR−Y246.0
    −Z300.0
    下载: 导出CSV

    表  6  仿真工况下蜂窝板热耗分布

    Table  6.   Heat dissipation distribution of honeycomb panels under simulation conditions W

    类型热耗
    −X蜂窝板194.1
    +X蜂窝板189.1
    +Y蜂窝板72.8
    −Y蜂窝板34.6
    +Z蜂窝板757.5
    −Z蜂窝板876.6
    下载: 导出CSV

    表  7  相控阵天线热流分布

    Table  7.   Phased array antenna heat flow distribution W

    类型相控阵收发
    天线1
    相控阵收发
    天线2
    相控阵
    发射天线
    向空间辐射−69.3−67.8−44.3
    向+Z板传导−120.2−122.1−32.7
    向+Z板辐射−4.1−4.4−1.7
    吸收外热流37.036.024.0
    WF_XKZSF1/2_1
    (WF_XKZFS_1)
    −19.3−18.1−9.3
    WF_XKZSF1/2_2
    (WF_XKZFS_2)
    −18.0−16.8−17.0
    WF_XKZSF1/2_3
    (WF_XKZFS_3)
    −19.6−14.2−21.1
    WF_XKZSF1/2_4
    (WF_XKZFS_4)
    −21.4−11.2−10.3
    WF_XKZSF1/2_5
    (WF_XKZFS_5)
    −19.0−20.3−17.1
    WF_XKZSF1/2_6
    (WF_XKZFS_6)
    −17.2−19.5−20.5
    WF_XKZSF1/2_7−14.8−20.7
    WF_XKZSF1/2_8−14.1−20.9
    内热源300.0300.0150.0
    下载: 导出CSV

    表  8  热管传导功率

    Table  8.   Heat pipe conduction power W

    序号类型传导功率
    1YM_+Z141.2
    2YM_+Z286.2
    3YM_+Z341.9
    4YM_+Z414.6
    5YM_+Z543.2
    6YM_+Z690.2
    7YM_+Z741.5
    8WF_U139.3
    9WF_U247.7
    10WF_U335.9
    11WF_U436.9
    12WF_U550.2
    13WF_U637.3
    14YM_+Y151.9
    15YM_+Y240.2
    16YM_+Y315.7
    17YM_−Y131.2
    18YM_−Y211.0
    19YM_−Y33.7
    20WF_L115.2
    21WF_L218.4
    22WF_L319.4
    23WF_L416.0
    下载: 导出CSV

    表  9  蜂窝板间热流分布

    Table  9.   Heat flow distribution between honeycomb panels W

    类型空间辐射散热吸收外热流U型热管传导L型热管传导太阳帆板舱内蜂窝板间辐射
    +Z板−773.5396.9−247.34.8−36.5
    −Z板−927.0246.669.00.344.6
    +Y板−212.731.0164.8−33.510.5−2.0
    −Y板−228.0159.382.5−35.511.5−2.0
    下载: 导出CSV

    表  10  十字交叉热管网络温度分布

    Table  10.   The crisscross heat pipe networks temperature distribution

    热管位置稳态温度
    T10YM_+Z2+Y侧32.3
    T11YM_+Z2−Y侧32.9
    T12YM_+Z335.8
    T13YM_+Z537.9
    T14YM_+Z6+Y侧32.0
    T15YM_+Z6−Y侧32.2
    T17WF_XKZSF1_243.7
    T19WF_XKZSF1_438.6
    T21WF_XKZSF1_547.3
    T23WF_XKZSF1_743.5
    T25WF_XKZSF2_246.7
    T27WF_XKZSF2_445.8
    T29WF_XKZSF2_547.2
    T31WF_XKZSF2_737.6
    T33WF_XKZFS_240.9
    T35WF_XKZFS_542.4
    T36YM_+Z130.0
    T37YM_+Z730.1
    T38YM_+Z445.0
    下载: 导出CSV

    表  11  热管传导网络温度分布

    Table  11.   Heat pipe networks temperature distribution

    名称位置稳态温度热管本体温差
    T49WF_L2+Y侧21.60.4
    T50WF_L2−Z侧21.20.4
    T55WF_L4−Y侧22.30.4
    T56WF_L4−Z侧22.70.4
    T67WF_U1+Y侧27.70.4
    T68WF_U1+Z侧27.80.4
    T69WF_U1−Y侧28.10.4
    T70WF_U2+Y侧31.90.6
    T71WF_U2+Z侧32.10.6
    T72WF_U2−Y侧31.50.6
    T73WF_U3+Y侧34.10.4
    T74WF_U3+Z侧34.50.4
    T75WF_U3−Y侧34.50.4
    T76WF_U4+Y侧34.50.4
    T77WF_U4+Z侧34.90.4
    T78WF_U4−Y侧34.60.4
    T51WF_L1+Y侧22.00.2
    T52WF_L1−Z侧22.20.2
    T57WF_L3−Y侧23.60.2
    T58WF_L3−Z侧23.40.2
    T79WF_U5+Y侧30.21.0
    T80WF_U5+Z侧30.41.0
    T81WF_U5−Y侧31.21.0
    T82WF_U6+Y侧29.00.1
    T83WF_U6+Z侧29.00.1
    T84WF_U6−Y侧29.10.1
    下载: 导出CSV
  • [1] FOREMAN V L, SIDDIQI A, DE WECK O L. Large satellite constellation orbital debris impacts: Case studies of OneWeb and SpaceX proposals[C]//AIAA SPACE and Astronautics Forum and Exposition. Reston: AIAA, 2017: 5200.
    [2] 阎鲁滨. 星载相控阵天线的技术现状及发展趋势[J]. 航天器工程, 2012, 21(3): 11-17. doi: 10.3969/j.issn.1673-8748.2012.03.010

    YAN L B. Technology status and developing trends of satellite phased array[J]. Spacecraft Engineering, 2012, 21(3): 11-17(in Chinese). doi: 10.3969/j.issn.1673-8748.2012.03.010
    [3] WANG C, WANG Y, LIAN P, et al. Space phased array antenna developments: A perspective on structural design[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(7): 44-63. doi: 10.1109/MAES.2020.2984300
    [4] 李靖, 王金海, 刘彦刚, 等. 卫星通信中相控阵天线的应用及展望[J]. 无线电工程, 2019, 49(12): 1076-1084. doi: 10.3969/j.issn.1003-3106.2019.12.011

    LI J, WANG J H, LIU Y G, et al. Application and prospect of phased array antenna in satellite communications[J]. Radio Engineering, 2019, 49(12): 1076-1084(in Chinese). doi: 10.3969/j.issn.1003-3106.2019.12.011
    [5] WANG C S, DUAN B Y, ZHANG F S, et al. Coupled structural-electromagnetic-thermal modelling and analysis of active phased array antennas[J]. IET Microwaves, Antennas & Propagation, 2010, 4(2): 247-257.
    [6] JONAS F M. Thermal management approaches for large planar phased array space antennas[C]//AIP Conference Proceedings. New York: American Institute of Physics, 2000: 815-820.
    [7] SCOTT M. Sampson MFR active phased array antenna[C]//IEEE International Symposium on Phased Array Systems and Technology. Piscataway: IEEE Press, 2003: 119-123.
    [8] AGRAWAL A K, MATTIOLI J A, LANDRY N R. An active phased array antenna packaging scheme[C]//IEEE Antennas and Propagation Society International Symposium. Piscataway : IEEE Press, 2002: 1608-1611.
    [9] 宋正梅. 有源相控阵天线微通道冷却技术研究[D]. 西安: 西安电子科技大学, 2013: 36-47.

    SONG Z M. Analysis of cooling performances of microchannel cold plate and its application to active phased array antennas[D]. Xi’an: Xidian University, 2013: 36-47(in Chinese).
    [10] PARLAK M, MCGLEN R J. Cooling of high power active phased array antenna using axially grooved heat pipe for a space application[C]//2015 7th International Conference on Recent Advances in Space Technologies. Piscataway: IEEE Press, 2015: 743-748.
    [11] NAKAGAWA M, MORIKAWA E, KOYAMA Y, et al. Development of thermal control for phased array antenna[C]//21st International Communications Satellite Systems Conference and Exhibit. Reston: AIAA, 2003: 2226.
    [12] SCHUSS J J, UPTON J, MYERS B, et al. The IRIDIUM main mission antenna concept[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(3): 416-424. doi: 10.1109/8.768775
    [13] DIETRICH F J, METZEN P, MONTE P. The Globalstar cellular satellite system[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(6): 935-942. doi: 10.1109/8.686783
    [14] AKAISHI A, IGUCHI M, HARIU K, et al. Ka-band active phased array antenna for WINDS satellite[C]//21st International Communications Satellite Systems Conference and Exhibit. Reston: AIAA, 2003: 2397.
    [15] 马伟, 宣益民, 韩玉阁, 等. 长寿命卫星热控涂层性能退化及其对卫星热特征的影响[J]. 宇航学报, 2010, 31(2): 568-572. doi: 10.3873/j.issn.1000-1328.2010.02.042

    MA W, XUAN Y M, HAN Y G, et al. Degradation performance of long-life satellite thermal coating and its influence on thermal character[J]. Journal of Astronautics, 2010, 31(2): 568-572(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.02.042
    [16] 冯伟泉, 丁义刚, 闫德葵, 等. 地球同步轨道长寿命卫星热控涂层太阳吸收率性能退化研究[J]. 中国空间科学技术, 2005, 25(2): 34-40. doi: 10.3321/j.issn:1000-758X.2005.02.007

    FENG W Q, DING Y G, YAN D K, et al. Study on long-term degradation of solar absorptance properties of geostationary satellite thermal control coatings[J]. Chinese Space Science and Technology, 2005, 25(2): 34-40(in Chinese). doi: 10.3321/j.issn:1000-758X.2005.02.007
  • 加载中
图(9) / 表(11)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  61
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 录用日期:  2021-09-30
  • 网络出版日期:  2021-10-28
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答