留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工平动点附近混合推进航天器编队滑模控制保持

贺京九 袁长清 龚胜平 赵磊

贺京九,袁长清,龚胜平,等. 人工平动点附近混合推进航天器编队滑模控制保持[J]. 北京航空航天大学学报,2023,49(5):1222-1230 doi: 10.13700/j.bh.1001-5965.2021.0420
引用本文: 贺京九,袁长清,龚胜平,等. 人工平动点附近混合推进航天器编队滑模控制保持[J]. 北京航空航天大学学报,2023,49(5):1222-1230 doi: 10.13700/j.bh.1001-5965.2021.0420
HE J J,YUAN C Q,GONG S P,et al. Sliding mode control for formation flying near libration points using hybrid propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1222-1230 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0420
Citation: HE J J,YUAN C Q,GONG S P,et al. Sliding mode control for formation flying near libration points using hybrid propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1222-1230 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0420

人工平动点附近混合推进航天器编队滑模控制保持

doi: 10.13700/j.bh.1001-5965.2021.0420
详细信息
    作者简介:

    贺京九 男,硕士研究生。主要研究方向:航天器动力学与控制

    袁长清 男,博士,教授,硕士生导师。主要研究方向:航天器动力学与控制、库仑编队动力学与控制

    龚胜平 男,博士,教授,博士生导师。主要研究方向:多天体系统动力学和航天器动力学与控制。赵 磊 男,硕士研究生。主要研究方向:航天器动力学与控制

    通讯作者:

    E-mail:ycq02@mails.tsinghua.edu.cn

  • 中图分类号: V448+.2

Sliding mode control for formation flying near libration points using hybrid propulsion

More Information
  • 摘要:

    针对近距离航天器编队在日地系人工L1点附近的飞行控制问题,提出一种将太阳帆推进技术与库仑力编队技术相结合的混合推进控制方法。通过控制从航天器太阳帆相对于主航天器的姿态角调整主从间光压力差,同时与主从间库仑力相配合,既解决仅依靠太阳帆控制而存在的欠驱动问题,又改善了库仑编队的可控性。以太阳帆圆形限制性三体问题(SSCRTBP)模型为基础,给出共线人工平动点位置的计算方法,并构造主航天器运行轨道;引入航天器间库仑力,推导出混合推进编队相对运动方程;设计了固定时间滑模控制策略,以从航天器太阳帆的2个姿态角和主从间电荷积为控制量,对编队构型进行控制,将其与LQR控制策略对比,仿真结果表明:固定时间滑模控制策略在控制精度、所需时间、能量消耗等方面均优于LQR控制策略。在时长3年的任务中,编队仅用23天就展开完毕,保持阶段基线相对误差小于1%,其他两轴误差在厘米量级,整个过程无工质消耗,对于今后开展长期深空探测任务具有重要意义。

     

  • 图 1  相关坐标系

    Figure 1.  Relevant coordinate systems

    图 2  主从式航天器编队

    Figure 2.  Leader-follower spacecraft formations

    图 3  系统固定时间滑模控制结构

    Figure 3.  Structure of fixed-time sliding mode control

    图 4  主航天器参考轨道 (AZ=2×105 km)

    Figure 4.  Reference orbit of leader craft (AZ=2×105 km)

    图 5  相对运动轨迹

    Figure 5.  Relative motion trajectory

    图 6  x轴相对位置误差

    Figure 6.  Relative position error of x axis

    图 7  三轴相对加速度

    Figure 7.  Relative acceleration of 3 axes

    图 8  主从间电荷积

    Figure 8.  Charge product between leader and follower

    图 9  从航天器太阳帆姿态角

    Figure 9.  Attitude angle of follower’s solar sail

    表  1  两种控制方法性能指标

    Table  1.   Performance indicators of two control strategies

    方法ex/mt/[TU]u/mNQF/C2δmax/rad
    本文0.35 0.4101量级10−10量级< π/2
    文献[28]0.670.23102量级10−8量级>π/2
    下载: 导出CSV
  • [1] 曹喜滨, 张锦绣, 王峰. 航天器编队动力学与控制[M]. 北京: 国防工业出版社, 2013: 1-5.

    CAO X B, ZHANG J X, WANG F. Dynamics and control of spacecraft formation flying[M]. Beijing: National Defense Industry Press, 2013: 1-5(in Chinese).
    [2] WANG F, CHEN X Q, TSOURDOS A, et al. Sun-Earth L2 point formation control using polynomial eigenstructure assignment[J]. Acta Astronautica, 2012, 76(3): 26-36.
    [3] PENG H J, ZHAO J, WU Z G, et al. Optimal periodic controller for formation flying on libration point orbits[J]. Acta Astronautica, 2011, 69(7-8): 537-550. doi: 10.1016/j.actaastro.2011.04.020
    [4] BANDO M, ICHIKAWA A. Formation flying along Halo orbit of circular-restricted three-body problem[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(1): 123-129. doi: 10.2514/1.G000463
    [5] ROUZEGAR H, KHOSRAVI A, SARHADI P. Spacecraft formation flying control around L2 Sun-Earth libration point using on-off SDRE approach[J]. Advances in Space Research, 2021, 67(7): 2172-2184. doi: 10.1016/j.asr.2021.01.008
    [6] 姜春生, 王永, 李恒年, 等. 日地平动点编队飞行自抗扰轨道维持控制[J]. 空间控制技术与应用, 2017, 43(1): 49-54.

    JIANG C S, WANG Y, LI H N, et al. ADRC-based orbit maintaining control of spacecraft formation flying around halo orbits about the Sun-Earth libration points[J]. Aerospace Control and Application, 2017, 43(1): 49-54(in Chinese).
    [7] XU M, LIANG Y Y, FU X Y. Formation flying on quasi-Halo orbits in restricted Sun-Earth/Moon system[J]. Aerospace Science and Technology, 2017, 67: 118-125. doi: 10.1016/j.ast.2017.03.038
    [8] WANG W, MENGALL G, QUARTA A A, et al. Distributed adaptive synchronization for multiple spacecraft formation flying around Lagrange point orbits[J]. Aerospace Science and Technology, 2018, 74: 93-103. doi: 10.1016/j.ast.2018.01.007
    [9] HE Z Q, YAO L. Improved successive approximation control for formation flying at libration points of solar-Earth system[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4084-4100. doi: 10.3934/mbe.2021205
    [10] 龚胜平, 李俊峰, 宝音贺西, 等. 拉格朗日点附近编队的离散控制方法[J]. 宇航学报, 2007, 28(1): 77-81.

    GONG S P, LI J F, BAOYIN H X, et al. Discrete control method for the formation flying around Lagrange point[J]. Journal of Astronautics, 2007, 28(1): 77-81(in Chinese).
    [11] 龚胜平. 太阳帆航天器动力学与控制研究[D]. 北京: 清华大学, 2009: 98-100.

    GONG S P. Study on dynamics and control of sail-craft[D]. Beijing: Tsinghua University, 2009: 98-100(in Chinese).
    [12] VULPETTI G, JOHNSON L, MATLOFF G L. Solar sails: A novel approach to inter-planetary travel[M]. 2nd ed. Berlin: Springer, 2015.
    [13] 张楷田. 两类非开普勒轨道的动力学与控制研究[D]. 合肥: 中国科学技术大学, 2016: 1-5.

    ZHANG K T. Dynamics and control of two types of the non-Keplerian orbits[D]. Hefei: University of Science and Technology of China, 2016: 1-5(in Chinese).
    [14] MCINNES C R, BOTHMER V, DACHWALD B, et al. Gossamer roadmap technology reference study for a sub-L1 space weather mission[M]//MACDONALD M. Advances in solar sailing. Berlin: Springer, 2014: 227-242.
    [15] PELONI A, DACHWALD B, CERIOTTI M. Multiple near-Earth asteroid rendezvous mission: Solar-sailing options[J]. Advances in Space Research, 2018, 62(8): 2084-2098.
    [16] 楼张鹏. 连续小推力航天器平动点轨道动力学与控制[D]. 合肥: 中国科学技术大学, 2019: 68-71.

    LOU Z P. Dynamics and control of continuous low-thrust spacecraft on libration points[D]. Hefei: University of Science and Technology of China, 2019: 68-71 (in Chinese).
    [17] 朱敏. 太阳帆航天器动力学与控制研究[D]. 合肥: 中国科学技术大学, 2016: 73-91.

    ZHU M. Dynamics and control of solar sail spacecraft[D]. Hefei: University of Science and Technology of China, 2016: 73-91(in Chinese).
    [18] 陈弈澄, 齐瑞云, 张嘉芮, 等. 混合小推力航天器轨道保持高性能滑模控制[J]. 航空学报, 2019, 40(7): 322827. doi: 10.7527/S1000-6893.2019.22827

    CHEN Y C, QI R Y, ZHANG J R, et al. High-performance sliding mode control for orbit keeping of spacecraft using hybrid low-thrust propulsion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322827(in Chinese). doi: 10.7527/S1000-6893.2019.22827
    [19] 熊攀. 日地L2平动点编队相对位置保持控制鲁棒D-稳定性分析[D]. 哈尔滨: 哈尔滨工业大学, 2016: 41-50.

    XIONG P. The robust D-stability analysis of relative position-keeping control for the Sun-Earth L2 libration point formation flying spacecrafts[D]. Harbin: Harbin Institute of Technology, 2016: 41-50(in Chinese).
    [20] LYON B K, GORDON G P, SATWIK D, et al. Spacecraft formation-flying using inter-vehicle Coulomb forces: NIAC-2002-601[R]. Houghton: NIAC, 2002: 6-7.
    [21] 施强. 地球同步轨道处三星库仑编队动力学与控制研究[D]. 长春: 空军航空大学, 2017: 14-15.

    SHI Q. Research on the dynamics and control of three-craft Coulomb formation in GEO[D]. Changchun: Air Force Aviation University, 2017: 14-15(in Chinese).
    [22] MCINNES C R. Solar sailing: Technology, dynamics and mission applications[M]. Berlin: Springer, 2004: 27-35.
    [23] RICHARDSON D L. Analytic construction of periodic orbits about the collinear points[J]. Celestial Mechanics, 1980, 22(3): 241-253. doi: 10.1007/BF01229511
    [24] 刘宜成, 熊宇航, 杨海鑫. 基于RBF神经网络的多关节机器人固定时间滑模控制[J]. 控制与决策, 2022, 37(11): 2790-2798. doi: 10.13195/j.kzyjc.2021.0421

    LIU Y C, XIONG Y H, YANG H X. Fixed-time sliding mode control of multi-joint robot based on RBF neural network[J]. Control and Decision, 2022, 37(11): 2790-2798(in Chinese). doi: 10.13195/j.kzyjc.2021.0421
    [25] 王婷. 采用混合推进下的库仑卫星编队重构控制研究[J]. 航天控制, 2017, 35(2): 20-24. doi: 10.16804/j.cnki.issn1006-3242.2017.02.004

    WANG T. Study of Coulomb satellites formation reconfiguration by hybrid propulsion[J]. Aerospace Control, 2017, 35(2): 20-24(in Chinese). doi: 10.16804/j.cnki.issn1006-3242.2017.02.004
    [26] ZUO Z Y, HAN Q L, NING B D, et al. An overview of recent advances in fixed-time cooperative control of multiagent systems[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2322-2334. doi: 10.1109/TII.2018.2817248
    [27] 王毓媛. 地月空间航天器编队飞行动力学与控制方法研究[D]. 长沙: 国防科技大学, 2017: 15-16.

    WANG Y Y. Research on dynamics and control of the cislunar spacecraft formation flying[D]. Changsha: National University of Defense Technology, 2017: 15-16(in Chinese).
    [28] 孙炳磊, 贺亮, 韩飞, 等. 静止轨道卫星高精度悬停编队最优滑模控制器设计[J]. 空间控制技术与应用, 2016, 42(6): 9-13. doi: 10.3969/j.issn.1674-1579.2016.06.002

    SUN B L, HE L, HAN F, et al. Optimal sliding mode control for geostationary satellite high-precision hovering formation flying[J]. Aerospace Control and Application, 2016, 42(6): 9-13(in Chinese). doi: 10.3969/j.issn.1674-1579.2016.06.002
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  44
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 录用日期:  2021-10-11
  • 网络出版日期:  2021-11-04
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答