留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竖直螺旋管中超临界RP-3航空煤油换热数值研究

王彦红 陆英楠 李洪伟 李素芬 东明

王彦红,陆英楠,李洪伟,等. 竖直螺旋管中超临界RP-3航空煤油换热数值研究[J]. 北京航空航天大学学报,2023,49(5):1108-1115 doi: 10.13700/j.bh.1001-5965.2021.0421
引用本文: 王彦红,陆英楠,李洪伟,等. 竖直螺旋管中超临界RP-3航空煤油换热数值研究[J]. 北京航空航天大学学报,2023,49(5):1108-1115 doi: 10.13700/j.bh.1001-5965.2021.0421
WANG Y H,LU Y N,LI H W,et al. Numerical study on heat transfer of supercritical RP-3 aviation kerosene in vertical helical tubes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1108-1115 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0421
Citation: WANG Y H,LU Y N,LI H W,et al. Numerical study on heat transfer of supercritical RP-3 aviation kerosene in vertical helical tubes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1108-1115 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0421

竖直螺旋管中超临界RP-3航空煤油换热数值研究

doi: 10.13700/j.bh.1001-5965.2021.0421
基金项目: 国家自然科学基金(51576027)
详细信息
    通讯作者:

    E-mail:lihongwei@neepu.edu.cn

  • 中图分类号: V231.1

Numerical study on heat transfer of supercritical RP-3 aviation kerosene in vertical helical tubes

Funds: National Natural Science Foundation of China (51576027)
More Information
  • 摘要:

    针对空-油换热器的冷却换热问题,开展了竖直螺旋管中超临界RP-3航空煤油换热的数值研究。探究了不同运行参数和结构参数下的换热特性和换热机理,包括沿流动方向的平均换热情况和沿管道周向的局部换热情况。考察管截面温度和二次流的分布情况,通过流速和湍动能径向差别阐述了离心力对换热的作用机制,基于误差分析得到合理的换热关联式。结果表明:管下游表现为强化换热机制,低压力下还观察到局部传热恶化问题;离心力导致流体域温度横向异常分层,边界层厚度周向不均匀,管截面出现二次流;管外侧流速和湍动能高,换热显著优于管内侧;提高运行压力、降低热质比、增大绕径、增大螺距均抑制离心力作用,致使二次流强度减弱;Merkel换热公式可以较好实现螺旋管内航空煤油的换热预测。

     

  • 图 1  竖直螺旋管物理模型

    Figure 1.  Physical model of vertical helical tube

    图 2  螺旋管网格

    Figure 2.  Meshes of helical tube

    图 3  RP-3航空煤油比热容随温度的变化情况

    Figure 3.  Specific heat capacity variation with temperature of RP-3 aviation kerosene

    图 4  模型验证

    Figure 4.  Model validation

    图 5  不同压力下Twi,avhav沿流动方向的分布情况

    Figure 5.  Twi,av and hav distributions along flow direction at various pressures

    图 6  不同压力下Re沿流动方向的分布情况

    Figure 6.  Re distribution along flow direction at various pressures

    图 7  不同压力下Twih沿管周向的分布情况

    Figure 7.  Twi and h distributions along circumferential direction at various pressures

    图 8  不同压力下管截面的温度分布情况

    Figure 8.  Temperature distribution in tube cross section at various pressures

    图 9  不同压力下管截面二次流分布情况

    Figure 9.  Secondary flow distribution in tube cross section at various pressures

    图 10  流速和湍动能的径向分布情况

    Figure 10.  Velocity and turbulent kinetic energy radial distribution

    图 11  不同热质比下Twi,avhav沿流动方向的分布情况

    Figure 11.  Twi,av and hav distributions along flow direction at various heat-mass ratios

    图 12  不同热质比下Twih沿管周向的分布情况

    Figure 12.  Twi and h distributions along circumferential direction at various heat-mass ratios

    图 13  不同通道参数下Twi,avhav沿流动方向的分布情况

    Figure 13.  Twi,av and hav distributions along flow direction at various channel parameters

    图 14  不同通道参数下Twih沿沿管周向的分布情况

    Figure 14.  Twi and h distributions along circumferential direction at various channel parameters

    图 15  Se沿流动方向的变化情况

    Figure 15.  Se variation along flow direction

    图 16  Nu沿流动方向的变化情况

    Figure 16.  Nu variation along flow direction

    图 17  Nu数值结果与预测数据的比较情况

    Figure 17.  Comparison of Nu between numerical results and prediction data

  • [1] FU Y C, WEN J, TAO Z, et al. Experimental research on convective heat transfer of supercritical hydrocarbon fuel flowing through U-turn tubes[J]. Applied Thermal Engineering, 2017, 116: 43-55. doi: 10.1016/j.applthermaleng.2017.01.058
    [2] LIU S B, BAO Z W, HUANG W X, et al. Numerical investigation of boundary grid effect on heat transfer computation of RP-3 at supercritical temperature of helical tube wall[J]. Journal of Thermal Science, 2021, 30(2): 504-516. doi: 10.1007/s11630-021-1355-1
    [3] ZHAO H J, LI X W, WU X X. Numerical investigation of supercritical water turbulent flow and heat transfer characteristics in vertical helical tubes[J]. The Journal of Supercritical Fluids, 2017, 127: 48-61. doi: 10.1016/j.supflu.2017.03.016
    [4] LI F B, BAI B F. Flow and heat transfer of supercritical water in the vertical helically-coiled tube under half-side heating condition[J]. Applied Thermal Engineering, 2018, 133: 512-519. doi: 10.1016/j.applthermaleng.2018.01.047
    [5] ZHANG S J, XU X X, LIU C, et al. The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2018, 125: 274-289. doi: 10.1016/j.ijheatmasstransfer.2018.04.033
    [6] WANG K Z, XU X X, WU Y Y, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99: 112-120. doi: 10.1016/j.supflu.2015.02.001
    [7] XU J L, YANG C Y, ZHANG W, et al. Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure[J]. International Journal of Heat and Mass Transfer, 2015, 80: 748-758. doi: 10.1016/j.ijheatmasstransfer.2014.09.066
    [8] LIU X X, XU X X, LIU C, et al. Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO2 in helically coiled tube at various inclination angles[J]. Applied Thermal Engineering, 2017, 116: 500-515. doi: 10.1016/j.applthermaleng.2017.01.103
    [9] 李洪瑞, 徐肖肖, 刘朝, 等. 螺旋管内超临界CO2流动方向对换热的影响[J]. 航空学报, 2016, 37(7): 2123-2131.

    LI H R, XU X X, LIU C, et al. Flow direction effect on heat transfer of supercritical CO2 in helically coiled tube[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2123-2131(in Chinese).
    [10] 黄小锐, 张震, 杨星团, 等. 超临界CO2在螺旋管中的流动换热特性研究[J]. 原子能科学技术, 2018, 52(5): 769-775.

    HUANG X R, ZHANG Z, YANG X T, et al. Numerical study on heat transfer characteristic of CO2 in helical tube at supercritical pressure[J]. Atomic Energy Science and Technology, 2018, 52(5): 769-775(in Chinese).
    [11] FU Y C, HUANG H R, WEN J, et al. Experimental investigation on convective heat transfer of supercritical RP-3 in vertical miniature tubes with various diameters[J]. International Journal of Heat and Mass Transfer, 2017, 112: 814-824. doi: 10.1016/j.ijheatmasstransfer.2017.05.008
    [12] CHENG Z Y, TAO Z, ZHU J Q, et al. Diameter effect on the heat transfer of supercritical hydrocarbon fuel in horizontal tubes under turbulent conditions[J]. Applied Thermal Engineering, 2018, 134: 39-53. doi: 10.1016/j.applthermaleng.2018.01.105
    [13] WEN J, HUANG H R, FU Y C, et al. Heat transfer performance of aviation kerosene RP-3 flowing in a vertical helical tube at supercritical pressure[J]. Applied Thermal Engineering, 2017, 121: 853-862. doi: 10.1016/j.applthermaleng.2017.04.055
    [14] BAI W J, ZHANG S J, LI H R, et al. Effects of abnormal gravity on heat transfer of supercritical CO2 in heated helically coiled tube[J]. Applied Thermal Engineering, 2019, 159: 113833.
    [15] FU Y C, TAO Z, XU G Q, et al. Experimental study of flow distribution for aviation kerosene in parallel helical tubes under supercritical pressure[J]. Applied Thermal Engineering, 2015, 90: 102-109. doi: 10.1016/j.applthermaleng.2015.06.082
    [16] 程泽源, 朱剑琴, 金钊. 吸热型碳氢燃料RP-3替代模型研究[J]. 航空动力学报, 2016, 31(2): 391-398. doi: 10.13224/j.cnki.jasp.2016.02.018

    CHENG Z Y, ZHU J Q, JIN Z. Study on surrogate model of endothermic hydrocarbon fuel RP-3[J]. Journal of Aerospace Power, 2016, 31(2): 391-398(in Chinese). doi: 10.13224/j.cnki.jasp.2016.02.018
    [17] TAO Z, LI L W, ZHU J Q, et al. Numerical investigation on flow and heat transfer characteristics of supercritical RP-3 in inclined pipe[J]. Chinese Journal of Aeronautics, 2019, 32(8): 1885-1894. doi: 10.1016/j.cja.2019.05.007
    [18] 王淑香, 张伟, 牛志愿, 等. 超临界压力下CO2在螺旋管内的混合对流换热[J]. 化工学报, 2013, 64(11): 3917-3926.

    WANG S X, ZHANG W, NIU Z Y, et al. Mixed convective heat transfer to supercritical carbon dioxide in helically coiled tube[J]. CIESC Journal, 2013, 64(11): 3917-3926(in Chinese).
    [19] SCHHUKIN V K. Correlation of experimental data on heat transfer in curved pipes[J]. Thermal Engineering, 1969, 16: 72-76.
    [20] MORI Y S, NAKAYAMA W. Study of forced convective heat transfer in curved pipes(2nd report, turbulent region)[J]. International Journal of Heat and Mass Transfer, 1967, 10(1): 37-59. doi: 10.1016/0017-9310(67)90182-2
  • 加载中
图(17)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  43
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 录用日期:  2021-09-09
  • 网络出版日期:  2021-10-09
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答