留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

提高冲碾机跟踪规划路径精度的方法

宋二波 姚仰平

宋二波,姚仰平. 提高冲碾机跟踪规划路径精度的方法[J]. 北京航空航天大学学报,2023,49(1):106-114 doi: 10.13700/j.bh.1001-5965.2021.0495
引用本文: 宋二波,姚仰平. 提高冲碾机跟踪规划路径精度的方法[J]. 北京航空航天大学学报,2023,49(1):106-114 doi: 10.13700/j.bh.1001-5965.2021.0495
SONG E B,YAO Y P. Method of improving tracking precision of planning path for impact rollers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):106-114 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0495
Citation: SONG E B,YAO Y P. Method of improving tracking precision of planning path for impact rollers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):106-114 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0495

提高冲碾机跟踪规划路径精度的方法

doi: 10.13700/j.bh.1001-5965.2021.0495
基金项目: 国家重点研发计划(2018YFE0207100); 国家重点基础研究发展计划(2014CB047006)
详细信息
    通讯作者:

    E-mail: ypyao@buaa.edu.cn

  • 中图分类号: TU47;TU666;TP13;U412.3

Method of improving tracking precision of planning path for impact rollers

Funds: National Key R & D Program of China (2018YFE0207100); National Basic Research Program of China (2014CB047006)
More Information
  • 摘要:

    近年来在机场高填方工程中应用无人冲击碾压机已成为一种新趋势,而冲碾机在地头转向处常出现较大的跟踪误差,从而影响工作区的压实。提出一种适用于冲碾机地头转向的路径优化方法,有效提高冲碾机转向跟踪精度。基于2种广义初等曲线的计算方法,建立U型转向路径,并综合考虑最小转弯半径和曲率连续的条件,在靠近原规划路径处筛选出有效路径。基于广义双初等曲线的计算方法,建立Ω型转向路径,并综合考虑了最小转弯半径和曲率连续的约束条件,在靠近原规划路径处筛选出有效路径。基于MATLAB/Simulink平台搭建的模型预测控制器(MPC),仿真对比原规划路径与优化后路径的轨迹跟踪效果,结果表明:U型转向和Ω型转向优化后的路径跟踪效果都较好,从而验证所提优化方法的有效性。

     

  • 图 1  冲碾机转向方式

    Figure 1.  Headland turning mode of impact roller

    图 2  冲碾机压实工艺

    Figure 2.  Compaction technology of impact roller

    图 3  广义初等路径

    Figure 3.  Generalized elementary path

    图 4  R=6 m不同λ取值的广义初等曲线

    Figure 4.  Generalized elementary curves with different λ for R=6 m

    图 5  方法1得到的与R=6 m相近的路径

    Figure 5.  Paths close to R=6 m by method 1

    图 6  连接两直线的过渡曲线

    Figure 6.  Transition curve used to connect two straight stretches

    图 7  $R'=6\;{\rm{m}} $不同λ值的曲线

    Figure 7.  Generalized elementary curves with different λ for $R'=6\;{\rm{m}} $

    图 8  方法2得到的与R=6 m相近的路径

    Figure 8.  Paths close to R=6 m by method 2

    图 9  不同γ取值的双初等路径示意图

    Figure 9.  Schematic diagram of bi-elementary paths with different γ values

    图 10  不同γ取值的Ω型转向路径及曲率

    Figure 10.  Ω-shaped turning paths and curvature with different γ values

    图 11  曲率连续的Ω型转向路径及曲率

    Figure 11.  Ω-shaped turning path with continuous curvature and curvature change of the path

    图 12  控制系统框图

    Figure 12.  Block diagram of control system

    图 13  不同U型转向路径下横向跟踪误差

    Figure 13.  Lateral error of trajectory tracking for different U-shaped turning paths

    图 14  不同U型转向路径下轨迹跟踪的转向角

    Figure 14.  Steering angle of trajectory tracking for different U-shaped turning paths

    图 15  不同Ω型转向路径下横向跟踪误差

    Figure 15.  Lateral error of trajectory tracking for different Ω-shaped turning paths

    图 16  不同Ω型转向路径下轨迹跟踪转向角

    Figure 16.  Steering angle of trajectory tracking for different Ω-shaped turning paths

    表  1  不同λ值的R约束值

    Table  1.   R constraint values with different λ values

    λDRλDR
    第1组00.841811.22第4组0.70.87386.85
    第2组0.20.8459.39第5组0.90.89086.25
    第3组0.50.85927.63
    下载: 导出CSV
  • [1] YAO Y P, RUAN Y Z, CHEN J, et al. Research on a real-time monitoring platform for compaction of high embankment in airport engineering[J]. Journal of Construction Engineering & Management, 2018, 144(1): 04017096.
    [2] 王常顺, 张煌, 潘为刚, 等. 冲击压路机自动驾驶控制系统及方法: CN109799830A[P]. 2019-05-24.

    WANG C S, ZHANG H, PAN W G, et al. Automatic driving control system and method for impact roller: CN109799830A[P]. 2019-05-24(in Chinese).
    [3] ZHANG X, LUO T, SONG E B, at el. Algorithm for optimal path planning of impact roller in high-embankment airport[J]. Japanese Geotechnical Society Special Publication, 2020, 8(5): 159-163. doi: 10.3208/jgssp.v08.c06
    [4] 杨洁. 基于WSN的农机自动导航技术研究[D]. 成都: 西南交通大学, 2018: 17-19.

    YANG J. Research on agricultural machinery automatic navigation based on wireless sensor networks[D]. Chengdu: Southwest Jiaotong University, 2018: 17-19(in Chinese).
    [5] 黄小毛, 丁幼春, 宗望远, 等. 农机作业地头转弯方式及路径生成算法研究[C]//中国农业工程学会2011年学术年会, 2011: 1-6.

    HUANG X M, DING Y C, ZONG W Y, et al. Turning mode and path generation algorithm for the agricultural vehicles[C]// Proceedings of 2011 Academic Annual Meeting of China Agricultural Engineering Society, 2011: 1-6(in Chinese).
    [6] SONG E B, ZHANG X. Research on the path optimization of unmanned rolling impaction for high embankment of airport[J]. Japanese Geotechnical Society Special Publication, 2020, 8(5): 142-148. doi: 10.3208/jgssp.v08.c05
    [7] GÓMEZ-BRAVO F, CUESTA F, OLLERO A, et al. Continuous curvature path generation based on β-spline curves for parking manoeuvres[J]. Robotics and Autonomous Systems, 2008, 56: 360-372. doi: 10.1016/j.robot.2007.08.004
    [8] DONG W, DING Y, HUANG J, et al. An optimal curvature smoothing method and the associated real-time interpolation for the trajectory generation of flying robots[J]. Robotics and Autonomous Systems, 2019, 115: 73-82. doi: 10.1016/j.robot.2019.02.004
    [9] BACKMAN J, PIIRAINEN P, OKSANEN T. Smooth turning path generation for agricultural vehicles in headlands[J]. Biosystems Engineering, 2015, 139: 76-86. doi: 10.1016/j.biosystemseng.2015.08.005
    [10] GRAF PLESSEN M M, BEMPORAD A. Reference trajectory planning under constraints and path tracking using linear time-varying model predictive control for agricultural machines[J]. Biosystems Engineering, 2017, 153: 28-41. doi: 10.1016/j.biosystemseng.2016.10.019
    [11] FUNKE J, GERDES J C. Simple clothoid lane change trajectories for automated vehicles incorporating friction constraints[J]. Journal of Dynamic Systems, Measurement, and Control, 2016, 138: 021002. doi: 10.1115/1.4032033
    [12] VAZQUEZ-MENDEZ M E, CASAL G. The clothoid computation: A simple and efficient numerical algorithm[J]. Journal of Surveying Engineering, 2016, 142(3): 04016005. doi: 10.1061/(ASCE)SU.1943-5428.0000177
    [13] CARIOUS C, GOBOR Z, SEIFERTH B, et al. Mobile robot trajectory planning under kinematic and dynamic constraints for partial and full field coverage[J]. Journal of Field Robotics, 2017, 34(7): 1297-1312. doi: 10.1002/rob.21707
    [14] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014: 45-48.

    GONG J W, JIANG Y, XU W. Model predictive control of unmanned vehicle[M]. Beijing: Beijing Institute of Technology Press, 2014: 45-48 (in Chinese) .
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  70
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 录用日期:  2021-11-19
  • 网络出版日期:  2021-12-16
  • 整期出版日期:  2023-01-30

目录

    /

    返回文章
    返回
    常见问答