留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑失效阈值随机性的退化-冲击竞争失效建模

夏悦馨 方志耕

夏悦馨,方志耕. 考虑失效阈值随机性的退化-冲击竞争失效建模[J]. 北京航空航天大学学报,2023,49(8):2079-2088 doi: 10.13700/j.bh.1001-5965.2021.0576
引用本文: 夏悦馨,方志耕. 考虑失效阈值随机性的退化-冲击竞争失效建模[J]. 北京航空航天大学学报,2023,49(8):2079-2088 doi: 10.13700/j.bh.1001-5965.2021.0576
XIA Y X,FANG Z G. Degradation-shock competing failure modeling considering randomness of failure threshold[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2079-2088 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0576
Citation: XIA Y X,FANG Z G. Degradation-shock competing failure modeling considering randomness of failure threshold[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2079-2088 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0576

考虑失效阈值随机性的退化-冲击竞争失效建模

doi: 10.13700/j.bh.1001-5965.2021.0576
基金项目: 国家自然科学基金(72071111); 南京航空航天大学基本科研业务费资助项目(NP2019104)
详细信息
    通讯作者:

    E-mail:1687101086@qq.com

  • 中图分类号: V57;TB114.3

Degradation-shock competing failure modeling considering randomness of failure threshold

Funds: National Natural Science Foundation of China (72071111); Supported by the Fundamental Research Funds of Nanjing University of Aeronautics and Astronautics (NP2019104)
More Information
  • 摘要:

    针对大多竞争失效可靠性研究未考虑失效阈值随机性的情况,提出一种随机失效阈值影响下的竞争失效系统可靠性评价模型。分析冲击影响下退化过程中退化量及退化率的变化,并在此基础上考虑阈值随机性。讨论累积退化影响下的冲击过程,以系统所能承受的强度分布描述冲击失效阈值,并结合累积退化量的期望水平建立随时间变化的冲击失效阈值,从而明确描述了冲击失效阈值与退化过程之间的依赖关系,给出竞争失效过程的可靠性函数。以微电机系统为例进行对比及敏感性分析,验证了随机失效阈值的引入更能反映系统真实运行状态。

     

  • 图 1  两种竞争相依失效过程

    Figure 1.  Two dependent competing failure processes

    图 2  考虑阈值随机性的2种竞争相依失效过程

    Figure 2.  Two dependent competing failure processes considering random failure threshold

    图 3  随机阈值影响的可靠度曲线

    Figure 3.  Reliability curves influenced by random thresholds

    图 4  随机性与退化影响的冲击失效阈值

    Figure 4.  Random threshold and degradation effects on hard failure threshold

    图 5  竞争失效系统可靠度曲线

    Figure 5.  Reliability curves of competing failure system

    图 6  与传统方法可靠度对比曲线

    Figure 6.  Reliability curve compared with traditional method

    图 7  竞争失效系统可靠度曲线

    Figure 7.  Comparison analysis of competing failure

    图 8  p值的竞争失效敏感性分析

    Figure 8.  Competing failure sensitivity analysis of p-value

    图 9  a值的竞争失效敏感性分析

    Figure 9.  Competing failure sensitivity analysis of a-value

    图 10  不同阈值分布类型的影响分析

    Figure 10.  Influence analysis of different threshold distribution types

    图 11  退化阈值参数的敏感性分析

    Figure 11.  Sensitivity analysis of degradation threshold parameters

    图 12  冲击阈值参数的敏感性分析

    Figure 12.  Sensitivity analysis of shock threshold parameters

    表  1  参数取值

    Table  1.   Parameter values

    参数数值来源
    ${\beta _0}\sim N({\mu _\beta },\sigma _\beta ^2)$$\begin{gathered} {\mu _\beta } = 8.482\;3 \times {10^{ - 9} } \\ {\sigma _\beta } = 6.001\;6 \times {10^{ - 10} } \\ \end{gathered}$文献[6]
    $W\sim N({\mu _W},\sigma _W^2)$$\begin{gathered} {\mu _W} = 1.2 \\ {\sigma _W} = 0.2 \\ \end{gathered} $文献[16]
    ${\mu _h}$$1.25 \times {10^{ - 3}}$文献[16]
    $\lambda /{\rm{revolutions}}$$2.5 \times {10^{ - 5} }$文献[6]
    $c/ ({ {\text{μm} }^3}\cdot{\text{GPa} }^{-1 })$${\text{8} }{\text{.333} } \times {\text{1} }{ {\text{0} }^{ - 5} }$文献[16]
    $\omega \sim W(\eta ,\gamma ,{\mu }_{\omega })$$\begin{gathered} {\mu _\omega }{\text{ = } }0.85 \\ \eta = 0.685\;8 \\ \gamma = 1.569\;6 \\ \end{gathered}$假设
    $\alpha $0假设
    $a$$5 \times {10^{ - 6}}$假设
    $p$$100$假设
    ${\sigma _\varepsilon }$${10^{ - 10}}$假设
    $\sigma _h^2$${10^{ - 7}}$假设
    注:revolutions表示发动机每一转。
    下载: 导出CSV
  • [1] 毛业军, 赵胤淇, 张伟先, 等. 基于失效机理的超级电容加速退化研究[J]. 电源技术, 2021, 45(6): 778-780.

    MAO Y J, ZHAO Y Q, ZHANG W X, et al. Accelerated degradation of supercapacitor based on failure mechanism[J]. Chinese Journal of Power Sources, 2021, 45(6): 778-780(in Chinese).
    [2] ZHAO X, LV Z Y, HE Z D, et al. Reliability and opportunistic maintenance for a series system with multi-stage accelerated damage in shock environments[J]. Computers & Industrial Engineering, 2019, 137: 106029.
    [3] 孙富强, 李艳宏, 程圆圆. 考虑冲击韧性的退化-冲击相依竞争失效建模[J]. 北京航空航天大学学报, 2020, 46(12): 2195-2202. doi: 10.13700/j.bh.1001-5965.2019.0628

    SUN F Q, LI Y H, CHENG Y Y. Competing failure modeling for degradation-shock dependence systems with shock toughness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2195-2202(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0628
    [4] ZHU H Z, WANG X Q, XIAO M Q, et al. Reliability modeling for intermittent working system based on Wiener process[J]. Computers & Industrial Engineering, 2021, 160: 107599.
    [5] OUMOUNI M, SCHOEFS F, CASTANIER B. Modeling time and spatial variability of degradation through gamma processes for structural reliability assessment[J]. Structural Safety, 2019, 76: 162-173. doi: 10.1016/j.strusafe.2018.09.003
    [6] WANG X G, LI L, CHANG M X, et al. Reliability modeling for competing failure processes with shifting failure thresholds under severe product working conditions[J]. Applied Mathematical Modelling, 2021, 89: 1747-1763. doi: 10.1016/j.apm.2020.08.032
    [7] YE Z S, TANG L C, XU H Y. A distribution-based systems reliability model under extreme shocks and natural degradation[J]. IEEE Transactions on Reliability, 2011, 60(1): 246-256. doi: 10.1109/TR.2010.2103710
    [8] MONTORO-CAZORLA D, PÉREZ-OCÓN R. A reliability system under cumulative shocks governed by a BMAP[J]. Applied Mathematical Modelling, 2015, 39(23-24): 7620-7629. doi: 10.1016/j.apm.2015.03.066
    [9] GONG M, XIE M, YANG Y N. Reliability assessment of system under a generalized Run shock model[J]. Journal of Applied Probability, 2018, 55(4): 1249-1260. doi: 10.1017/jpr.2018.83
    [10] ERYILMAZ S. δ-shock model based on Polya process and its optimal replacement policy[J]. European Journal of Operational Research, 2017, 263(2): 690-697. doi: 10.1016/j.ejor.2017.05.049
    [11] PULCINI G. A model-driven approach for the failure data analysis of multiple repairable systems without information on individual sequences[J]. IEEE Transactions on Reliability, 2013, 62(3): 700-713. doi: 10.1109/TR.2013.2273040
    [12] FINKELSTEIN M, MARAIS F. On terminating Poisson processes in some shock models[J]. Reliability Engineering & System Safety, 2010, 95(8): 874-879.
    [13] CAO Y S, LIU S F, FANG Z G, et al. Modeling ageing effects in the context of continuous degradation and random shock[J]. Computers & Industrial Engineering, 2020, 145: 106539.
    [14] SONG S L, COIT D W, FENG Q M. Reliability for systems of degrading components with distinct component shock sets[J]. Reliability Engineering & System Safety, 2014, 132: 115-124.
    [15] RAFIEE K, FENG Q M, COIT D W. Reliability modeling for dependent competing failure processes with changing degradation rate[J]. IIE Transactions, 2014, 46(5): 483-496. doi: 10.1080/0740817X.2013.812270
    [16] HAO S H, YANG J, MA X B, et al. Reliability modeling for mutually dependent competing failure processes due to degradation and random shocks[J]. Applied Mathematical Modelling, 2017, 51: 232-249. doi: 10.1016/j.apm.2017.06.014
    [17] LEI Y, ZHU W Q. Fatigue crack growth in degrading elastic components of nonlinear structural systems under random loading[J]. International Journal of Solids and Structures, 2000, 37(4): 649-667. doi: 10.1016/S0020-7683(99)00030-X
    [18] FAN M F, ZENG Z G, ZIO E, et al. Modeling dependent competing failure processes with degradation-shock dependence[J]. Reliability Engineering & System Safety, 2017, 165: 422-430.
    [19] CHE H Y, ZENG S K, GUO J B, et al. Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process[J]. Reliability Engineering & System Safety, 2018, 180: 168-178.
    [20] JIANG L, FENG Q M, COIT D W. Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds[J]. IEEE Transactions on Reliability, 2012, 61(4): 932-948. doi: 10.1109/TR.2012.2221016
    [21] WANG X L, JIANG P, GUO B, et al. Real-time reliability evaluation based on damaged measurement degradation data[J]. Journal of Central South University, 2012, 19(11): 3162-3169. doi: 10.1007/s11771-012-1391-9
    [22] WANG W B, CARR M, XU W J, et al. A model for residual life prediction based on Brownian motion with an adaptive drift[J]. Microelectronics Reliability, 2011, 51(2): 285-293. doi: 10.1016/j.microrel.2010.09.013
    [23] USYNIN A, HINES J W, URMANOV A. Uncertain failure thresholds in cumulative damage models[C]//2008 Annual Reliability and Maintainability Symposium. Piscataway: IEEE Press, 2009: 334-340.
    [24] WANG P, COIT D W. Reliability and degradation modeling with random or uncertain failure threshold[C]//2007 Annual Reliability and Maintainability Symposium. Piscataway: IEEE Press, 2007: 392-397.
    [25] WANG Z Z, CHEN Y X, CAI Z Y, et al. Methods for predicting the remaining useful life of equipment in consideration of the random failure threshold[J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 415-431. doi: 10.23919/JSEE.2020.000018
    [26] TANNER D M, WALRAVEN J A, HELGESEN K, et al. MEMS reliability in shock environments[C]//2000 IEEE International Reliability Physics Symposium Proceedings. Piscataway: IEEE Press, 2002: 129-138.
    [27] TANG S J, YU C Q, FENG Y B, et al. Remaining useful life estimation based on Wiener degradation processes with random failure threshold[J]. Journal of Central South University, 2016, 23(9): 2230-2241. doi: 10.1007/s11771-016-3281-z
    [28] 王泽洲, 陈云翔, 蔡忠义, 等. 考虑随机失效阈值的设备剩余寿命在线预测[J]. 系统工程与电子技术, 2019, 41(5): 1162-1168. doi: 10.3969/j.issn.1001-506X.2019.05.32

    WANG Z Z, CHEN Y X, CAI Z Y, et al. Real-time prediction of remaining useful lifetime for equipment with random failure threshold[J]. Systems Engineering and Electronics, 2019, 41(5): 1162-1168(in Chinese). doi: 10.3969/j.issn.1001-506X.2019.05.32
    [29] TANNER D M, DUGGER M T. Wear mechanisms in a reliability methodology[J]. Proceedings of Spie the International Society for Optical Engineering, 2003, 4980: 22-40.
    [30] PENG H, FENG Q M, COIT D W. Simultaneous quality and reliability optimization for microengines subject to degradation[J]. IEEE Transactions on Reliability, 2009, 58(1): 98-105. doi: 10.1109/TR.2008.2011672
    [31] GAO H D, CUI L R, QIU Q G. Reliability modeling for degradation-shock dependence systems with multiple species of shocks[J]. Reliability Engineering & System Safety, 2019, 185: 133-143.
    [32] 王俊昭. 基于竞争失效过程的产品可靠性评估[D]. 西安: 西安电子科技大学, 2020: 6-20.

    WANG J Z. Product reliability evaluation based on competing failure process[D]. Xi’an: Xidian University, 2020: 6-20(in Chinese).
    [33] 陈琳. 材料强度的统计性质[J]. 国外石油机械, 1995(1): 71-76.

    CHEN L. Statistical properties of material strength[J]. Foreign Petroleum Machinery, 1995(1): 71-76(in Chinese).
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  61
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 录用日期:  2021-11-26
  • 网络出版日期:  2022-01-04
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答