Case study on seismic behavior of typical multistory light industrial building structures
-
摘要:
立式轻工业建筑结构存在大跨度、高空重载及竖向质量分布不均匀等特点,为研究该结构形式的振动响应特征,以某典型立式轻工业生产车间为背景,建立了精细化三维非线性计算模型,通过有限元仿真技术对该结构形式开展抗震性能研究。结果表明:通过合理设计,立式轻工业建筑结构能满足结构抗震设计要求,结构损伤呈由外及里的发展过程,塑性铰分布规律表现为高层多,低层少,重载层多,非重载层少的特点,在抗震设计过程中,应将重载楼层视为薄弱层予以加固,对外侧抗风柱应设置水平及垂直支撑,以延缓内部承载构件的损伤破坏,提高结构的整体抗震性能。此外,当结构存在大质量比可变荷载时,应该考虑其质量变化对结构动力特性的影响;当设备质量占比较小时,可忽略设备与结构之间的相互作用,抗震分析时可采用设备-结构固结模型进行简化计算。
Abstract:Vertical light industrial building structures exhibit characteristics such as large spans, high-altitude loads, and uneven vertical mass distribution. In order to investigate the vibration response characteristics of this structural form, this paper takes a typical vertical light industrial production workshop as a background and establishes a refined three-dimensional nonlinear computational model. Seismic performance research on this structural form is conducted through finite element simulation technology. The results show that the structure can meet the structural seismic requirements through reasonable design. The structural damage spreads from the outside to the inside. The plastic hinges are distributed more at high levels and less in low levels, and more on heavy load layers and less on non-heavy load layers. In the seismic design process, the heavily loaded floors should be considered as weak floors to be reinforced, and the horizontal and vertical supports should be set in the outer wind-resistant columns to delay the damage of the internal load-bearing members and improve the seismic performance of the structure. In addition, when a large mass ratio variable load exists on the structure, the effect of mass variation on the structural dynamic properties should be considered. When the mass of the equipment is smaller, the interaction between the equipment and the structure can be ignored, and the consolidation model for equipment and structure can be used for simplified calculation during seismic analysis.
-
表 1 各层顶部楼板主要荷载分布
Table 1. Primary load distribution on top floors of each level
楼层 设备荷载/(kN·m−2) 生产资料等可变荷载/(kN·m−2) 设备区1 设备区2 设备区3 其他 设备区1 设备区2 设备区3 其他 1 30 25 20 15 3 3 3 3 2 10 5 3 25 20 15 3 3 3 4 10 3 表 2 生产线及电力厂房自振周期
Table 2. Natural period of vibration for production line and power plant
振型 自振周期/s 圆频率/Hz 振型 自振周期/s 圆频率/Hz 1阶 0.898 1.113 6 5阶 0.521 1.919 4 2阶 0.893 1.119 8 6阶 0.521 1.921 2 3阶 0.843 1.186 2 7阶 0.499 2.003 3 4阶 0.551 1.814 9 8阶 0.485 2.061 9 表 3 不同工况下结构最大响应
Table 3. Maximum structural responses under various operating conditions
工况 最大顶层
位移/mm最大层间
位移/mm1/最大层间
位移角1/最大顶层
位角1/规范最大层间
位移角[23]是否满足
规范要求[23]薄弱
楼层Taft波(多遇地震) 12.09 5.78 2 684 3 674 800 是 2 El波(多遇地震) 12.13 5.79 2 675 3 663 800 是 2 人工波(多遇地震) 9.74 4.44 3 490 4 562 800 是 2 Taft波(罕遇地震) 57.42 30.88 516 774 50 是 4 El波(罕遇地震) 85.25 41.36 385 521 50 是 4 人工波(罕遇地震) 177.64 87.75 182 250 50 是 4 表 4 罕遇地震作用下结构各层塑性铰数量
Table 4. Number of plastic hinges at each level of structure under severe earthquake
个 地震波 1层 2层 3层 4层 总数 梁 柱 梁 柱 梁 柱 梁 柱 Taft波 0 0 1 0 0 0 259 396 656 El波 0 0 23 0 10 0 187 451 671 人工波 10 0 71 0 84 0 203 173 541 表 5 设备-结构固结模型与设备-结构弹簧模型频率、周期对比
Table 5. Comparison of frequency and period between equipment-structure fixed model and spring model
振型 频率/Hz 周期/s 设备-结构
固结模型设备-结构
弹簧模型设备-结构
固结模型设备-结构
弹簧模型1阶 1.113 6 1.113 3 0.898 0.898 2阶 1.119 8 1.119 5 0.893 0.983 3阶 1.186 2 1.185 3 0.843 0.844 4阶 1.814 9 1.814 7 0.551 0.551 5阶 1.919 4 1.918 5 0.521 0.521 6阶 1.921 2 1.919 0 0.521 0.521 7阶 2.003 3 2.002 9 0.499 0.499 8阶 2.061 9 2.061 2 0.485 0.485 表 6 罕遇地震作用下结构各层塑性铰数量
Table 6. Number of plastic hinges at each level of structure under severe earthquake
个 地震波 1层 2层 3层 4层 总数 梁 柱 梁 柱 梁 柱 梁 柱 Taft波 0 0 1 0 0 0 245 396 642 El波 0 0 22 0 8 0 196 444 670 人工波 10 0 71 0 76 0 209 183 549 -
[1] 金仁超. 多层排架结构工业厂房在罕遇地震作用下的弹塑性反应分析 [D]. 南京: 南京理工大学, 2009.JIN R C. Elasto-plastic response analysis of multi-storey bent industrial workshop under rare earthquake[D]. Nanjing: Nanjing University of Science and Technology, 2009 (in Chinese). [2] 李智, 丁然, 聂鑫, 等. 标准化立式工业建筑楼面活荷载取值[J]. 建筑结构学报, 2023, 44(3): 268-278.LI Z, DING R, NIE X, et al. Determination of floor live loads on standardized multistory industrial buildings[J]. Journal of Building Structures, 2023, 44(3): 268-278 (in Chinese). [3] 王焕定, 王伟. 单层厂房弹塑性地震反应分析[J]. 哈尔滨建筑工程学院学报, 1986(2): 86-103.WANG H D, WANG W. Analysis of the elasto-plastic seismic response of single-story mill buildings to ground motion[J]. Journal of Harbin University of Civil Engineering and Architecture, 1986(2): 86-103 (in Chinese). [4] 梁碧云. 新型多层框排架结构工业厂房的耗能减震研究[D]. 南京: 南京理工大学, 2012.LIANG B Y. Study on energy consumption and shock absorption of new multi-storey frame-bent industrial workshop[D]. Nanjing: Nanjing University of Science and Technology, 2012 (in Chinese). [5] 王跃. 多层厂房结构体系的发展概况[J]. 工业建筑, 1993, 23(8): 3-6. doi: 10.3321/j.issn:1000-8993.1993.08.001WANG Y. Developmental general situation of multistory factory structure system[J]. Industrial Construction, 1993, 23(8): 3-6 (in Chinese). doi: 10.3321/j.issn:1000-8993.1993.08.001 [6] 华建坤. 单跨多层大跨度工业建筑结构体系对比分析研究 [D]. 贵阳: 贵州大学, 2016.HUA J K. Comparative analysis and research on single-span multi-storey long-span industrial building structure system[D]. Guiyang: Guizhou University, 2016 (in Chinese). [7] 全明研. 钢筋混凝土多层工业厂房的可靠性鉴定[J]. 工业建筑, 1993, 23(9): 31-34. doi: 10.3321/j.issn:1000-8993.1993.09.009QUAN M Y. Reliability appraisement of the reinforced concrete multistore industrial building[J]. Industrial Construction, 1993, 23(9): 31-34 (in Chinese). doi: 10.3321/j.issn:1000-8993.1993.09.009 [8] MEDHEKAR M S, KENNEDY D J L. Displacement-based seismic design of buildings-theory[J]. Engineering Structures, 2000, 22(3): 201-209. doi: 10.1016/S0141-0296(98)00092-3 [9] PRIESTLEY M J N, KOWALSKY M J. Direct displacement-based seismic design of concrete buildings[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33(4): 421-444. doi: 10.5459/bnzsee.33.4.421-444 [10] DE ANGELIS M, PERNO S, REGGIO A. Dynamic response and optimal design of structures with large mass ratio TMD[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(1): 41-60. doi: 10.1002/eqe.1117 [11] PAN D G, CHEN G D, WANG Z C. Suboptimal Rayleigh damping coefficients in seismic analysis of viscously-damped structures[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(4): 653-670. doi: 10.1007/s11803-014-0270-9 [12] DISARNO L, ELNASHAI A S, NETHERCOT D A. Seismic response of stainless steel braced frames[J]. Journal of Constructional Steel Research, 2008, 64(7/8): 914-925. [13] 梁希强, 万叶青, 阮兵, 等. 按建筑功能区要求确定振动控制区域划分方法的研究[J]. 建筑结构, 2020, 50(S1): 423-427.LIANG X Q, WAN Y Q, RUAN B, et al. Study on the method of determining the division of vibration control area according to the requirements of building functional area[J]. Building Structure, 2020, 50(S1): 423-427 (in Chinese). [14] CHAUDHURI S R. Simplified methods for the nonlinear seismic response evaluation of nonstructural components[D]. Irvine: University of California, 2005. [15] MEDINA R A, SANKARANARAYANAN R, KINGSTON K M. Floor response spectra for light components mounted on regular moment-resisting frame structures[J]. Engineering Structures, 2006, 28(14): 1927-1940. doi: 10.1016/j.engstruct.2006.03.022 [16] CHAUDHURI S R, VILLAVERDE R. Effect of building nonlinearity on seismic response of nonstructural components: a parametric study[J]. Journal of Structural Engineering, 2008, 134(4): 661-670. doi: 10.1061/(ASCE)0733-9445(2008)134:4(661) [17] 韩淼, 王亮. 二次结构系统抗震研究的发展综述及展望[J]. 北京建筑工程学院学报, 2002, 18(2): 30-34.HAN M, WANG L. Review and expectation of the development of the seismic study on the primary-secondary systems[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 2002, 18(2): 30-34 (in Chinese). [18] 国巍, 李宏男. 多维地震作用下偏心结构楼板谱分析[J]. 工程力学, 2008, 25(7): 125-132.GUO W, LI H N. Floor response spectrum of eccentric structure to two-dimensional earthquake[J]. Engineering Mechanics, 2008, 25(7): 125-132 (in Chinese). [19] 常献辉. 剪力墙结构工业厂房的抗震性能研究[D]. 天津: 天津大学, 2012.CHANG X H. Study on seismic performance of industrial workshop with shear wall structure[D]. Tianjin: Tianjin University, 2012 (in Chinese). [20] 聂建国, 陶慕轩. 采用纤维梁单元分析钢-混凝土组合结构地震反应的原理[J]. 建筑结构学报, 2011, 32(10): 1-10.NIE J G, TAO M X. Theory of seismic response analysis of steel-concrete composite structures using fiber beam elements[J]. Journal of Building Structures, 2011, 32(10): 1-10 (in Chinese). [21] 刘大海, 杨翠如, 钟锡根. 多层厂房差异平移—扭转耦联振动的地震反应分析[J]. 土木工程学报, 1983, 16(4): 53-66.LIU D H, YANG C R, ZHONG X G. A differential translation-torsion coupling earthquake response analysis for multi-story factory buildings[J]. Journal of Civil Engineering, 1983, 16(4): 53-66 (in Chinese). [22] 邹胜斌. 工业建筑多层钢筋混凝土抗震框架的非线性动力反应研究 [D]. 重庆: 重庆大学, 2001.ZOU S B. Study on nonlinear dynamic response of multi-storey reinforced concrete seismic frame in industrial buildings[D]. Chongqing: Chongqing University, 2001 (in Chinese). [23] 中华人民共和国住房和城乡建设部, 国家质量监督检验检疫总局. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for seismic design of buildings: GB 50011—2010 [S]. Beijing: China Architecture & Building Press, 2010 (in Chinese). [24] 丁然, 陶慕轩, 周萌, 等. 考虑楼板大开洞及大质量比附属设施的结构抗震性能实例研究[J]. 工程力学, 2016, 33(3): 65-76.DING R, TAO M X, ZHOU M, et al. Case study on structural seismic behavior considering large slab openings and auxiliary facilities with large mass ratios[J]. Engineering Mechanics, 2016, 33(3): 65-76 (in Chinese). -