留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高动态场景下的极化空时零陷展宽算法

李润 王垚 郝放 张明程

李润,王垚,郝放,等. 高动态场景下的极化空时零陷展宽算法[J]. 北京航空航天大学学报,2023,49(5):1231-1237 doi: 10.13700/j.bh.1001-5965.2022.0501
引用本文: 李润,王垚,郝放,等. 高动态场景下的极化空时零陷展宽算法[J]. 北京航空航天大学学报,2023,49(5):1231-1237 doi: 10.13700/j.bh.1001-5965.2022.0501
LI R,WANG Y,HAO F,et al. Polarization space-time null broadening algorithm in high dynamic scenes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1231-1237 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0501
Citation: LI R,WANG Y,HAO F,et al. Polarization space-time null broadening algorithm in high dynamic scenes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1231-1237 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0501

高动态场景下的极化空时零陷展宽算法

doi: 10.13700/j.bh.1001-5965.2022.0501
基金项目: 国家重点研发计划(2019YFC1511504)
详细信息
    通讯作者:

    E-mail:cetc54wy@163.com

  • 中图分类号: TN973

Polarization space-time null broadening algorithm in high dynamic scenes

Funds: National Key R & D Program of China (2019YFC1511504)
More Information
  • 摘要:

    在高动态场景下,干扰源相对于抗干扰天线快速运动,传统抗干扰算法会零陷失配,导致抗干扰性能失效。为此,提出一种极化空时多维域联合的协方差矩阵锥化(CMT)算法。基于Laplace分布构造锥化矩阵来模拟干扰运动状态,通过锥化矩阵与原始协方差矩阵重构新的协方差矩阵实现零陷展宽,结合最小方差无失真响应(MVDR)准则求解阵列权矢量。仿真结果从波束方向图、输出性能和卫星捕获结果3个方面证实了所提算法在干扰位置快变情形下的稳健性,即使在干扰信号和导航信号具有相同的方位角和频带时,也能有效抑制干扰。

     

  • 图 1  极化空时滤波结构

    Figure 1.  Polarized space-time filtering structure

    图 2  空域波束方向图

    Figure 2.  Beam pattern with spatial domain

    图 3  极化域波束方向图

    Figure 3.  Beam pattern with polarization domain

    图 4  单干扰与双干扰下输出SINR随输入SNR变化关系

    Figure 4.  Output SINR versus input SNR under single interference and two interferences

    图 5  单干扰与双干扰下输出SINR随快拍数变化关系

    Figure 5.  Output SINR versus number of snapshot under single interference and two interferences

    图 6  输出SINR随干扰和导航信号方位角差值的关系

    Figure 6.  Output SINR versus azimuth difference of jamming signal and navigation signal

    图 7  卫星捕获结果

    Figure 7.  Results of satellite capture

  • [1] GAO G X, SGAMMINI M, LU M Q, et al. Protecting GNSS receivers from jamming and interference[J]. Proceedings of the IEEE, 2016, 104(6): 1327-1338. doi: 10.1109/JPROC.2016.2525938
    [2] THOMBRE S, BHUIYAN M Z H, ELIARDSSON P, et al. GNSS threat monitoring and reporting: Past, present, and a proposed future[J]. Journal of Navigation, 2018, 71(3): 513-529. doi: 10.1017/S0373463317000911
    [3] BORIO D, CLOSAS P. Robust transform domain signal processing for GNSS[J]. Navigation, 2019, 66(2): 305-323. doi: 10.1002/navi.300
    [4] DAI X Z, NIE J W, CHEN F Q, et al. Distortionless space-time adaptive processor based on MVDR beamformer for GNSS receiver[J]. IET Radar, Sonar & Navigation, 2017, 11(10): 1488-1494.
    [5] PARK K W, PARK C. Determination of LO frequency for reception of maximum number of GNSS signals in presence of interference[J]. Electronics Letters, 2019, 55(9): 552-554. doi: 10.1049/el.2019.0556
    [6] 周长霖, 王春阳, 宫健, 等. 基于干扰重构和盲源分离的混合极化抗SMSP干扰[J]. 北京航空航天大学学报, 2021, 47(9): 1841-1848. doi: 10.13700/j.bh.1001-5965.2020.0326

    ZHOU C L, WANG C Y, GONG J, et al. Hybrid polarization anti-SMSP jamming based on jamming reconstruction and blind source separation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1841-1848(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0326
    [7] YUAN X L, GAN L. Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction[J]. Signal Processing, 2017, 130: 233-242. doi: 10.1016/j.sigpro.2016.07.008
    [8] LIU Y Q, LIU C C, HU D X, et al. Robust adaptive beam forming against random calibration error via interference-plus-noise covariance matrix reconstruction[J]. Signal Processing, 2019, 158: 107-115 . doi: 10.1016/j.sigpro.2019.01.003
    [9] ZHANG B H, MA H G, SUN X L, et al. Robust anti-jamming method for high dynamic global positioning system receiver[J]. IET Signal Processing, 2016, 10(4): 342-350. doi: 10.1049/iet-spr.2015.0122
    [10] QIAN J H, HE Z S, XIE J L, et al. Null broadening adaptive beamforming based on covariance matrix reconstruction and similarity constraint[J/OL]. EURASIP Journal on Advances in Signal Processing, 2017(2017-01-03) [2022-06-01]. https://asp.eurasipjournals.springeropen.com/articles/10.1186/S13634-016-0440.1.
    [11] MOHAMMADZADEH S, KUKRER O. Robust adaptive beamforming for fast moving interference based on the covariance matrix reconstruction[J]. IET Signal Processing, 2019, 13(4): 486-493. doi: 10.1049/iet-spr.2018.5264
    [12] LI W X, ZHAO Y, YE Q B, et al. Adaptive antenna null broadening beamforming against array calibration error based on adaptive variable diagonal loading[J]. International Journal of Antennas and Propagation, 2017,2017: 1-9.
    [13] 王晓君, 李笑添. 基于功率估计的高动态GNSS抗干扰零陷展宽算法[J]. 太赫兹科学与电子信息学报, 2021, 19(5): 838-844.

    WANG X J, LI X T. Null widening algorithm for GNSS using a novel signal power estimation in high speed environment[J]. Journal of Terahertz Science and Electronic Information Technology, 2021, 19(5): 838-844(in Chinese).
    [14] 王海洋, 姚志成, 范志良, 等. 高速运动环境下GNSS接收机阵列抗干扰算法[J]. 系统工程与电子技术, 2020, 42(11): 2409-2417. doi: 10.3969/j.issn.1001-506X.2020.11.01

    WANG H Y, YAO Z C, FAN Z L, et al. Anti-jamming algorithm for GNSS receivers with array antenna in high speed environment[J]. Systems Engineering and Electronics, 2020, 42(11): 2409-2417(in Chinese). doi: 10.3969/j.issn.1001-506X.2020.11.01
    [15] MAILLOUX R J. Covariance matrix augmentation to produce adaptive array pattern troughs[J]. Electronics Letters, 1995, 31(10): 771-772.
    [16] ZATMAN M. Production of adaptive array troughs by dispersion synthesis[J]. Electronics Letters, 1995, 31(25): 2141-2142. doi: 10.1049/el:19951486
    [17] 卢丹, 葛璐, 王文益, 等. 基于空时降维处理的高动态零陷加宽算法[J]. 电子与信息学报, 2016, 38(1): 216-221.

    LU D, GE L, WANG W Y, et al. A high-dynamic null-widen algorithm based on reduced dimension space-time adaptive processing[J]. Journal of Electronics & Information Technology, 2016, 38(1): 216-221(in Chinese).
    [18] XIA G Q, XIA W, XIE M, et al. A robust GNSS polarized space-time anti-interference method based on null broadening[C]//10th International Conference on Communications, Circuits and Systems (ICCCAS). Piscataway: IEEE Press, 2019: 207-211.
    [19] 李荣锋, 王永良, 万山虎. 自适应天线方向图干扰零陷加宽方法研究[J]. 现代雷达, 2003, 25(2): 42-45. doi: 10.3969/j.issn.1004-7859.2003.02.012

    LI R F, WANG Y L, WAN S H. Research on adapted pattern null widening techniques[J]. Modern Radar, 2003, 25(2): 42-45(in Chinese). doi: 10.3969/j.issn.1004-7859.2003.02.012
    [20] 武思军, 张锦中, 张曙. 阵列波束的零陷加宽算法研究[J]. 哈尔滨工程大学学报, 2004, 25(5): 658-661. doi: 10.3969/j.issn.1006-7043.2004.05.025

    WU S J, ZHANG J Z, ZHANG S. Research on beamforming of wide nulling algorithm[J]. Journal of Harbin Engineering University, 2004, 25(5): 658-661(in Chinese). doi: 10.3969/j.issn.1006-7043.2004.05.025
    [21] 王海洋, 刘光斌, 范志良, 等. 一种针对GNSS接收机的宽零陷抗干扰算法[J]. 哈尔滨工业大学学报, 2019, 51(4): 94-98. doi: 10.11918/j.issn.0367-6234.201806097

    WANG H Y, LIU G B, FAN Z L, et al. A null widening anti-jamming algorithm for GNSS receivers[J]. Journal of Harbin Institute of Technology, 2019, 51(4): 94-98(in Chinese). doi: 10.11918/j.issn.0367-6234.201806097
    [22] MA Y X, LU D, WANG W Y, et al. A high-dynamic null-widen GPS anti-jamming algorithm based on statistical model of the changing interference DOA[C]//China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume I. Berlin: Springer, 2014: 695-702.
    [23] YANG X P, LI S, LONG T, et al. Adaptive null broadening method in wideband beamforming for rapidly moving interference suppression[J]. Electronics Letters, 2018, 54(16): 1003-1005. doi: 10.1049/el.2018.1228
    [24] 李鹏程, 顾杰, 李津, 等. 基于STAP的卫星导航零陷展宽抗干扰技术[J]. 电子信息对抗技术, 2021, 36(6): 14-17. doi: 10.3969/j.issn.1674-2230.2021.06.003

    LI P C, GU J, LI J, et al. Satellite navigation null broadening anti-Jamming technology based on STAP[J]. Electronic Information Warfare Technology, 2021, 36(6): 14-17(in Chinese). doi: 10.3969/j.issn.1674-2230.2021.06.003
    [25] 夏国庆. 自适应阵列干扰抑制算法研究[D]. 成都:电子科技大学, 2020.

    XIA G Q. Researches of anti-interference algorithms based on adaptive arrays[D]. Chengdu: University of Electronic Science and Technology of China, 2020(in Chinese).
    [26] YANG J, LU J, LIU X, et al. Robust null broadening beamforming based on covariance matrix reconstruction via virtual interference sources[J]. Sensors, 2020, 20(7): 1865.
    [27] HINEDI S, STATMAN J I. High-dynamic GPS tracking: NASA-CR-184868[R]. Washington, D. C.: NASA, 1988.
  • 加载中
图(7)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  71
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 录用日期:  2022-09-16
  • 网络出版日期:  2022-10-11
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答