留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳能飞艇刚性电池阵列接收能量分析

刘思宇 高健 孙康文

刘思宇,高健,孙康文. 太阳能飞艇刚性电池阵列接收能量分析[J]. 北京航空航天大学学报,2024,50(11):3542-3552 doi: 10.13700/j.bh.1001-5965.2022.0820
引用本文: 刘思宇,高健,孙康文. 太阳能飞艇刚性电池阵列接收能量分析[J]. 北京航空航天大学学报,2024,50(11):3542-3552 doi: 10.13700/j.bh.1001-5965.2022.0820
LIU S Y,GAO J,SUN K W. Analysis of energy receiving by rigid cell array of solar airship[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3542-3552 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0820
Citation: LIU S Y,GAO J,SUN K W. Analysis of energy receiving by rigid cell array of solar airship[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3542-3552 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0820

太阳能飞艇刚性电池阵列接收能量分析

doi: 10.13700/j.bh.1001-5965.2022.0820
基金项目: 国家自然科学基金(51775021);中央高校基本科研业务费专项资金(YWF-21-JC-01,YWF-22-JC-02)
详细信息
    通讯作者:

    E-mail:09142@buaa.edu.cn

  • 中图分类号: V221;TM914.4

Analysis of energy receiving by rigid cell array of solar airship

Funds: National Natural Science Foundation of China (51775021); The Fundamental Research Funds for the Central Universities (YWF-21-JC-01,YWF-22-JC-02)
More Information
  • 摘要:

    太阳能飞艇能量全部来自太阳能电池阵列,阵列接收的太阳辐射能量大小决定了飞艇的续航能力。对用于飞艇的刚性晶体硅电池和柔性薄膜电池进行建模,考虑实际电池板单元的尺寸和形状,对比刚性电池的斜平面阵列和柔性电池的曲面阵列在接收能量上的差异,并分析飞艇尺寸对这2种阵列接收能量的影响。对于刚性电池设置4种斜平面阵列布置形式,比较斜平面阵列中电池板的尺寸和形状对接收能量的影响。结果表明:中低纬度处刚性电池的斜平面阵列在全年各天中接收的太阳辐射能量都高于柔性电池的曲面阵列,在高纬度地区则相反。对于刚性电池,电池板在飞艇圆周方向上的尺寸会显著影响斜平面阵列接收的太阳辐射能量。在低纬度地区应增大电池板在圆周方向上的长度以获得更多的辐射能量,而在高纬度地区则应减小长度。

     

  • 图 1  太阳高度角和方位角

    Figure 1.  Solar altitude angle and azimuth angle

    图 2  NPL低阻力飞艇包络线[19]

    Figure 2.  Envelope of NPL low resistance airship [19]

    图 3  NPL低阻力飞艇三维模型

    Figure 3.  3D model of NPL low resistance airship

    图 4  柔性电池的曲面阵列三维模型

    Figure 4.  3D model of curved array of flexible cell

    图 5  刚性电池的斜平面阵列三维模型

    Figure 5.  3D model of oblique plane array of rigid cell

    图 6  太阳高度角数据

    Figure 6.  Solar altitude angle data

    图 7  阵列接收能量数据

    Figure 7.  Energy data received by array

    图 8  不同日期斜平面和曲面电池阵列全天接收能量

    Figure 8.  Energy received by oblique plane and curved arrays throughout the day on different dates

    图 9  不同纬度斜平面和曲面电池阵列全天接收能量

    Figure 9.  Energy received by oblique plane and curved arrays throughout the day at different latitudes

    图 10  不同尺寸飞艇斜平面和曲面电池阵列接收能量差随日期变化曲线

    Figure 10.  Variation of difference in energy received by oblique plane and curved arrays of airship of different sizes with date

    图 11  不同尺寸飞艇斜平面和曲面电池阵列接收能量差随纬度变化曲线

    Figure 11.  Variation of difference in energy received by oblique plane and curved arrays of airship of different sizes with latitude

    图 12  刚性电池阵列布置方式

    Figure 12.  Rigid cell array arrangement

    图 13  不同日期4种斜平面电池阵列全天接收能量

    Figure 13.  Energy received by four oblique plane arrays throughout the day on different dates

    图 14  不同纬度4种斜平面电池阵列全天接收能量

    Figure 14.  Energy received by four oblique plane arrays throughout the day at different latitudes

    图 15  4种斜平面电池阵列接收能量随日期变化曲线

    Figure 15.  Variation of energy received by four oblique plane arrays with date

    图 16  4种斜平面电池阵列接收能量随纬度变化曲线

    Figure 16.  Variation of energy received by four oblique plane arrays with latitude

    图 17  不同电池板尺寸阵列全天接收能量变化

    Figure 17.  Changes in total energy received by array throughout the day under different solar panel sizes

    表  1  飞艇几何参数

    Table  1.   Geometry parameters of airship

    艇长/m 最大直径/m 最大直径距前端点位置/m
    18.1 5 7.5
    下载: 导出CSV
  • [1] MILLER G, STOIA T, HARMALA D, et al. Operational capability of high altitude solar powered airships[C]// Proceedings of the AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences. Reston: AIAA, 2005.
    [2] 王彦广, 李健全, 李勇, 等. 近空间飞行器的特点及其应用前景[J]. 航天器工程, 2007, 16(1): 50-57.

    WANG Y G, LI J Q, LI Y, et al. Characters and application prospects of near space flying vehicles[J]. Spacecraft Engineering, 2007, 16(1): 50-57 (in Chinese).
    [3] ABBE G, SMITH H. Technological development trends in Solar-powered Aircraft Systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 770-783. doi: 10.1016/j.rser.2016.01.053
    [4] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418.

    MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese).
    [5] 赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1): 45-56.

    ZHAO D, LIU D X, SUN K W, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 45-56 (in Chinese).
    [6] 杨希祥, 朱炳杰, 邓小龙, 等. Stratobus平流层飞艇项目研究进展与仿真分析[J]. 航空学报, 2021, 42(9): 224579.

    YANG X X, ZHU B J, DENG X L, et al. Development status and simulation analysis of stratospheric airship Stratobus[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224579 (in Chinese).
    [7] LYU M Y, LI J, ZHU W Y, et al. A theoretical study of rotatable renewable energy system for stratospheric airship[J]. Energy Conversion and Management, 2017, 140: 51-61. doi: 10.1016/j.enconman.2017.02.069
    [8] ZHANG L C, LI J, WU Y F, et al. Analysis of attitude planning and energy balance of stratospheric airship[J]. Energy, 2019, 183: 1089-1103. doi: 10.1016/j.energy.2019.07.002
    [9] MANIKANDAN M, PANT R S. Design optimization of a tri-lobed solar powered stratospheric airship[J]. Aerospace Science and Technology, 2019, 91: 255-262. doi: 10.1016/j.ast.2019.05.016
    [10] 肖治垣, 杨穆清, 郦正能. 变体飞艇太阳能电池阵列工作特性的影响因素[J]. 材料工程, 2013, 41(7): 24-28.

    XIAO Z Y, YANG M Q, LI Z N. Working characteristic affecting factors of transformable airships’ solar cell array[J]. Journal of Materials Engineering, 2013, 41(7): 24-28 (in Chinese).
    [11] 刘晓光, 汪岳峰. 基于遗传算法的太阳能飞艇光伏阵列优化研究[J]. 半导体光电, 2020, 41(1): 39-43.

    LIU X G, WANG Y F. Genetic algorithm-based topology optimization of photovoltaic array of solar-powered airships[J]. Semiconductor Optoelectronics, 2020, 41(1): 39-43 (in Chinese).
    [12] WANG H F, SONG B F, ZUO L K. Effect of high-altitude airship’s attitude on performance of its energy system[J]. Journal of Aircraft, 2007, 44(6): 2077-2080. doi: 10.2514/1.31505
    [13] 王国安, 米鸿涛, 邓天宏, 等. 太阳高度角和日出日落时刻太阳方位角一年变化范围的计算[J]. 气象与环境科学, 2007, 30(S1): 161-164.

    WANG G A, MI H T, DENG T H, et al. Calculation of annual variation range of solar altitude angle and solar azimuth angle at sunrise and sunset[J]. Meteorological and Environmental Sciences, 2007, 30(S1): 161-164 (in Chinese).
    [14] IQBAL, M. An introduction to solar radiation[M]. Toronto: Academic Press, 1983: 20-23.
    [15] LI J, LV M Y, TAN D J, et al. Output performance analyses of solar array on stratospheric airship with thermal effect[J]. Applied Thermal Engineering, 2016, 104: 743-750. doi: 10.1016/j.applthermaleng.2016.05.122
    [16] SUN K W, LIU C Y, LIANG G M, et al. Simulation analysis for solar array output characteristics on stratospheric airship[C]// Power and Energy Systems and Applications. Calgary: ACTA Press, 2012: 788-005.
    [17] 杨威宇, 徐国宁, 李兆杰, 等. 太阳电池在临近空间发电影响因素研究[J]. 太阳能学报, 2021, 42(12): 476-485.

    YANG W Y, XU G N, LI Z J, et al. Influence factors of solar cell power generation in near space[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 476-485 (in Chinese).
    [18] GABRIEL A K. Airship technology[M]. Znd ed. Cambridge: Cambridge University Press, 2012: 521-525.
    [19] KALE S, JOSHI P, PANT R. A generic methodology for determination of drag coefficient of an aerostat envelope using CFD[C]// Proceedings of the AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences. Reston: AIAA, 2005.
    [20] 刘松松, 孙康文. 考虑倍率的平流层飞艇储能电池建模与分析[J]. 北京航空航天大学学报, 2022, 48(1): 182-192.

    LIU S S, SUN K W. Modeling and analysis of stratospheric airship’s energy storage battery considering rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 182-192 (in Chinese).
    [21] ALAM M I, PANT R S. Multi-objective multidisciplinary design analyses and optimization of high altitude airships[J]. Aerospace Science and Technology, 2018, 78: 248-259. doi: 10.1016/j.ast.2018.04.028
    [22] 孟军辉, 李沫宁, 马诺, 等. 升力体式浮升混合飞艇多学科设计优化[J]. 北京航空航天大学学报, 2021, 47(1): 72-83.

    MENG J H, LI M N, MA N, et al. Multidisciplinary design optimization of a lift-type hybrid airship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 72-83(in Chinese).
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  78
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 录用日期:  2023-02-17
  • 网络出版日期:  2023-03-24
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答