-
摘要:
太阳能飞艇能量全部来自太阳能电池阵列,阵列接收的太阳辐射能量大小决定了飞艇的续航能力。对用于飞艇的刚性晶体硅电池和柔性薄膜电池进行建模,考虑实际电池板单元的尺寸和形状,对比刚性电池的斜平面阵列和柔性电池的曲面阵列在接收能量上的差异,并分析飞艇尺寸对这2种阵列接收能量的影响。对于刚性电池设置4种斜平面阵列布置形式,比较斜平面阵列中电池板的尺寸和形状对接收能量的影响。结果表明:中低纬度处刚性电池的斜平面阵列在全年各天中接收的太阳辐射能量都高于柔性电池的曲面阵列,在高纬度地区则相反。对于刚性电池,电池板在飞艇圆周方向上的尺寸会显著影响斜平面阵列接收的太阳辐射能量。在低纬度地区应增大电池板在圆周方向上的长度以获得更多的辐射能量,而在高纬度地区则应减小长度。
Abstract:The energy of the solar airship comes from the solar cell array, and the amount of solar radiation received by the array determines the endurance of the airship. The rigid crystalline silicon cells and flexible thin-film cells used in the airship were modeled. By considering the size and shape of the actual panel cells, the differences in received energy between the oblique plane array of the rigid cell and the curved array of the flexible cell were compared. The effect of airship size on the received energy of the two arrays was also analyzed. Then, four oblique plane array arrangements for rigid cells were set up, and the effect of the size and shape of the solar panels in the oblique plane array on the received energy was compared. The results show that the oblique plane array of the rigid cell at the low and middle latitudes receives higher solar radiation energy than the curved array of the flexible cell throughout the year, and the opposite is true in the high latitude area. For rigid cells, the size of the solar panels in the circumferential direction of the airship will significantly affect the solar radiation energy received by the oblique plane array. In low-latitude areas, the length of the solar panel in the circumferential direction should be increased to obtain more radiation energy, while in high-latitude areas, the length should be reduced.
-
Key words:
- solar airship /
- solar radiation /
- rigid solar array /
- flexible solar array /
- received energy
-
表 1 飞艇几何参数
Table 1. Geometry parameters of airship
艇长/m 最大直径/m 最大直径距前端点位置/m 18.1 5 7.5 -
[1] MILLER G, STOIA T, HARMALA D, et al. Operational capability of high altitude solar powered airships[C]// Proceedings of the AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences. Reston: AIAA, 2005. [2] 王彦广, 李健全, 李勇, 等. 近空间飞行器的特点及其应用前景[J]. 航天器工程, 2007, 16(1): 50-57.WANG Y G, LI J Q, LI Y, et al. Characters and application prospects of near space flying vehicles[J]. Spacecraft Engineering, 2007, 16(1): 50-57 (in Chinese). [3] ABBE G, SMITH H. Technological development trends in Solar-powered Aircraft Systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 770-783. doi: 10.1016/j.rser.2016.01.053 [4] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418.MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese). [5] 赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1): 45-56.ZHAO D, LIU D X, SUN K W, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 45-56 (in Chinese). [6] 杨希祥, 朱炳杰, 邓小龙, 等. Stratobus平流层飞艇项目研究进展与仿真分析[J]. 航空学报, 2021, 42(9): 224579.YANG X X, ZHU B J, DENG X L, et al. Development status and simulation analysis of stratospheric airship Stratobus[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224579 (in Chinese). [7] LYU M Y, LI J, ZHU W Y, et al. A theoretical study of rotatable renewable energy system for stratospheric airship[J]. Energy Conversion and Management, 2017, 140: 51-61. doi: 10.1016/j.enconman.2017.02.069 [8] ZHANG L C, LI J, WU Y F, et al. Analysis of attitude planning and energy balance of stratospheric airship[J]. Energy, 2019, 183: 1089-1103. doi: 10.1016/j.energy.2019.07.002 [9] MANIKANDAN M, PANT R S. Design optimization of a tri-lobed solar powered stratospheric airship[J]. Aerospace Science and Technology, 2019, 91: 255-262. doi: 10.1016/j.ast.2019.05.016 [10] 肖治垣, 杨穆清, 郦正能. 变体飞艇太阳能电池阵列工作特性的影响因素[J]. 材料工程, 2013, 41(7): 24-28.XIAO Z Y, YANG M Q, LI Z N. Working characteristic affecting factors of transformable airships’ solar cell array[J]. Journal of Materials Engineering, 2013, 41(7): 24-28 (in Chinese). [11] 刘晓光, 汪岳峰. 基于遗传算法的太阳能飞艇光伏阵列优化研究[J]. 半导体光电, 2020, 41(1): 39-43.LIU X G, WANG Y F. Genetic algorithm-based topology optimization of photovoltaic array of solar-powered airships[J]. Semiconductor Optoelectronics, 2020, 41(1): 39-43 (in Chinese). [12] WANG H F, SONG B F, ZUO L K. Effect of high-altitude airship’s attitude on performance of its energy system[J]. Journal of Aircraft, 2007, 44(6): 2077-2080. doi: 10.2514/1.31505 [13] 王国安, 米鸿涛, 邓天宏, 等. 太阳高度角和日出日落时刻太阳方位角一年变化范围的计算[J]. 气象与环境科学, 2007, 30(S1): 161-164.WANG G A, MI H T, DENG T H, et al. Calculation of annual variation range of solar altitude angle and solar azimuth angle at sunrise and sunset[J]. Meteorological and Environmental Sciences, 2007, 30(S1): 161-164 (in Chinese). [14] IQBAL, M. An introduction to solar radiation[M]. Toronto: Academic Press, 1983: 20-23. [15] LI J, LV M Y, TAN D J, et al. Output performance analyses of solar array on stratospheric airship with thermal effect[J]. Applied Thermal Engineering, 2016, 104: 743-750. doi: 10.1016/j.applthermaleng.2016.05.122 [16] SUN K W, LIU C Y, LIANG G M, et al. Simulation analysis for solar array output characteristics on stratospheric airship[C]// Power and Energy Systems and Applications. Calgary: ACTA Press, 2012: 788-005. [17] 杨威宇, 徐国宁, 李兆杰, 等. 太阳电池在临近空间发电影响因素研究[J]. 太阳能学报, 2021, 42(12): 476-485.YANG W Y, XU G N, LI Z J, et al. Influence factors of solar cell power generation in near space[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 476-485 (in Chinese). [18] GABRIEL A K. Airship technology[M]. Znd ed. Cambridge: Cambridge University Press, 2012: 521-525. [19] KALE S, JOSHI P, PANT R. A generic methodology for determination of drag coefficient of an aerostat envelope using CFD[C]// Proceedings of the AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences. Reston: AIAA, 2005. [20] 刘松松, 孙康文. 考虑倍率的平流层飞艇储能电池建模与分析[J]. 北京航空航天大学学报, 2022, 48(1): 182-192.LIU S S, SUN K W. Modeling and analysis of stratospheric airship’s energy storage battery considering rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 182-192 (in Chinese). [21] ALAM M I, PANT R S. Multi-objective multidisciplinary design analyses and optimization of high altitude airships[J]. Aerospace Science and Technology, 2018, 78: 248-259. doi: 10.1016/j.ast.2018.04.028 [22] 孟军辉, 李沫宁, 马诺, 等. 升力体式浮升混合飞艇多学科设计优化[J]. 北京航空航天大学学报, 2021, 47(1): 72-83.MENG J H, LI M N, MA N, et al. Multidisciplinary design optimization of a lift-type hybrid airship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 72-83(in Chinese).