留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速折叠翼飞行器气动布局优化设计

袁亚 刘君 余家泉 张程 任鹏飞

袁亚,刘君,余家泉,等. 高速折叠翼飞行器气动布局优化设计[J]. 北京航空航天大学学报,2024,50(11):3410-3416 doi: 10.13700/j.bh.1001-5965.2022.0849
引用本文: 袁亚,刘君,余家泉,等. 高速折叠翼飞行器气动布局优化设计[J]. 北京航空航天大学学报,2024,50(11):3410-3416 doi: 10.13700/j.bh.1001-5965.2022.0849
YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0849
Citation: YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0849

高速折叠翼飞行器气动布局优化设计

doi: 10.13700/j.bh.1001-5965.2022.0849
详细信息
    通讯作者:

    E-mail:liujun65@dlut.edu.cn

  • 中图分类号: V221+.3;TB553

Aerodynamic layout optimization design of high-speed folding-wing vehicles

More Information
  • 摘要:

    为解决在内部载荷和外部发射装置约束条件下高速复杂折叠翼飞行器气动布局优化设计问题,提出基于类型函数/形状函数转换(CST)技术和直接参数结合的折叠翼飞行器参数化建模方法,开发了基于物面法矢量快速修正的黏性气动特性快速计算方法,并围绕飞行器气动性能的多目标优化设计,构建了基于克里金代理模型-遗传算法(Kriging-GA)的高速折叠翼飞行器多目标优化算法框架和优化流程,实现高速折叠翼飞行器气动布局的优化设计,获得了多目标多约束下的优化解集,可指导高速折叠翼飞行器气动布局优化设计。

     

  • 图 1  典型CST方法生成截面

    Figure 1.  Typical cross-section generated by CST

    图 2  CST与直接参数化结合方法

    Figure 2.  Combination of CST and direct parameterization

    图 3  三维建模和网格划分

    Figure 3.  3D modeling and meshing

    图 4  坐标系及三角面元

    Figure 4.  Coordinate system and triangular surface element

    图 5  法向矢量矫正

    Figure 5.  Normal vector correction

    图 6  HL-20飞行器物面压力流线及气动特性

    Figure 6.  Surface pressure streamline and aerodynamic characteristics of HL-20 vehicles

    图 7  典型折叠翼飞行器折叠翼展开前后升阻比

    Figure 7.  Lift-drag ratios of typical folding-wing vehicle before and after wing spreading

    图 8  LHS方法采样

    Figure 8.  LHS method sampling

    图 9  升阻比代理模型均方差

    Figure 9.  Mean square error of surrogate model of lift-drag ratio

    图 10  飞行器外部约束

    Figure 10.  External constraints of vehicle

    图 11  气动布局优化框架

    Figure 11.  Aerodynamic layout optimization framework

    图 12  折叠翼多目标优化的Pareto前沿

    Figure 12.  Pareto frontiers for multi-objective optimization of folding wings

    图 13  Pareto前沿个体对比

    Figure 13.  Comparison of Pareto frontiers

    表  1  折叠翼飞行器归一化设计参数

    Table  1.   Normalized design parameters of folding-wing vehicle

    范围 Rhead x2(截面2) z2(截面2) Ncu Ncd Hu Hd CWR l1 l2 $ {\chi _{{_{\mathrm {WL}}} }} $ $ {\chi _{{_{\mathrm{WT}}} }} $ θ $ {\chi _{_{\mathrm{RL}}}} $ $ {\chi _{{_{\mathrm{RT}}} }} $
    上限 0.7143 0.8889 0.5000 0.1000 0.1000 0.2000 0.2000 0.9767 0.3750 0.3750 0.9286 0.8333 0.7143 0.9231 0.9767
    下限 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
    下载: 导出CSV

    表  2  优化后的设计变量

    Table  2.   Optimized design variables

    约束条件 Rhead x2(截面2) z2(截面2) Ncu Ncd Hu Hd CWR l1 l2 $ {\chi _{_{\mathrm{WL}}}} $ $ {\chi _{_{\mathrm{WT}}}} $ θ $ {\chi _{_{\mathrm{RL}}}} $ $ {\chi _{_{\mathrm{RT}}}} $
    升阻比最大 0.7515 0.9827 0.7605 0.9848 1.0000 0.9949 0.8412 0.9920 0.4244 0.4437 0.9985 0.8657 0.8279 0.9464 0.8751
    体积最大 0.7787 0.9460 0.7732 0.1278 0.1038 1.0000 1.0000 0.9862 0.4205 0.4525 0.9961 0.9655 0.8299 0.9622 0.8523
    下载: 导出CSV

    表  3  Pareto前端个体性能

    Table  3.   Performance of Pareto frontiers

    典型结果 Kunfold CDfold V/m3 S2/m2 l1/mm l2/mm Q/(kW·m−2)
    升阻比最大/阻力最小/体积最小 4.23 0.1833 0.40 0.1272 398 358 1315.0
    升阻比最小/阻力最大/体积最大 2.19 0.5462 0.63 0.1920 400 359 1291.8
    下载: 导出CSV
  • [1] 孙杨, 昌敏, 白俊强. 变形机翼飞行器发展综述[J]. 无人系统技术, 2021, 4(3): 65-77.

    SUN Y, CHANG M, BAI J Q. Review of morphing wing aircraft[J]. Unmanned Systems Technology, 2021, 4(3): 65-77(in Chinese).
    [2] 叶友达. 近空间高速飞行器气动特性研究与布局设计优化[J]. 力学进展, 2009, 39(6): 683-694. doi: 10.3321/j.issn:1000-0992.2009.06.009

    YE Y D. Study on aerodynamic characteristics and design optimization for high speed near space vehicles[J]. Advances in Mechanics, 2009, 39(6): 683-694(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.06.009
    [3] 马洋, 杨涛, 张青斌. 高超声速滑翔式升力体外形设计与优化[J]. 国防科技大学学报, 2014, 36(2): 34-40. doi: 10.11887/j.cn.201402007

    MA Y, YANG T, ZHANG Q B. Configuration optimization design of hypersonic gliding lifting body[J]. Journal of National University of Defense Technology, 2014, 36(2): 34-40(in Chinese). doi: 10.11887/j.cn.201402007
    [4] 曹特. 高超声速飞行器气动外形优化[D]. 南京: 南京航空航天大学, 2015.

    CAO T. Aerodynamic shape optimization of hypersonic vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [5] 吕韵, 周进, 童明波. 常规布局飞机概念外形参数化建模研究[J]. 机械设计与制造工程, 2019, 48(11): 7-10. doi: 10.3969/j.issn.2095-509X.2019.11.002

    LYU Y, ZHOU J, TONG M B. Research on the parametric design of concept aircraft shape[J]. Machine Design and Manufacturing Engineering, 2019, 48(11): 7-10(in Chinese). doi: 10.3969/j.issn.2095-509X.2019.11.002
    [6] YUAN Y. Numerical simulation of dynamic deployment of the folding wing[C]//Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017: 2371.
    [7] 刘玮, 陆宇平, 殷明. 折叠翼飞行器气动建模及变形稳定控制律设计[J]. 电子设计工程, 2014, 22(8): 1-4. doi: 10.3969/j.issn.1674-6236.2014.08.001

    LIU W, LU Y P, YIN M. Aerodynamic modeling and robust controller design for a folding wing aircraft[J]. Electronic Design Engineering, 2014, 22(8): 1-4(in Chinese). doi: 10.3969/j.issn.1674-6236.2014.08.001
    [8] 唐伟, 张勇, 李为吉, 等. 二次曲线截面弹身的气动设计及优化[J]. 宇航学报, 2004, 25(4): 429-433. doi: 10.3321/j.issn:1000-1328.2004.04.015

    TANG W, ZHANG Y, LI W J, et al. Aerodynamic design and optimization for vehicles with conic cross section[J]. Journal of Astronautics, 2004, 25(4): 429-433(in Chinese). doi: 10.3321/j.issn:1000-1328.2004.04.015
    [9] LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6): 59-65. doi: 10.1109/38.329096
    [10] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. doi: 10.2514/1.29958
    [11] 冯毅, 唐伟, 任建勋, 等. 飞行器参数化几何建模方法研究[J]. 空气动力学学报, 2012, 30(4): 546-550. doi: 10.3969/j.issn.0258-1825.2012.04.020

    FENG Y, TANG W, REN J X, et al. Parametric geometry representation method for hypersonic vehicle configuration[J]. Acta Aerodynamica Sinica, 2012, 30(4): 546-550(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.04.020
    [12] MCDONALD R A. Interactive reconstruction of 3D models in the OpenVSP parametric geometry tool[C]//Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1014.
    [13] 程锋, 唐硕, 张栋. 超声速/高超声速飞行器气动力快速估算平台设计及应用[J]. 西北工业大学学报, 2018, 36(6): 1076-1084. doi: 10.3969/j.issn.1000-2758.2018.06.007

    CHENG F, TANG S, ZHANG D. Design and applications of preliminary evaluation platform of aerodynamic forces for supersonic/hypersonic vehicles[J]. Journal of Northwestern Polytechnical University, 2018, 36(6): 1076-1084(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.06.007
    [14] LOBBIA M A. Rapid supersonic/hypersonic aerodynamics analysis model for arbitrary geometries[J]. Journal of Spacecraft and Rockets, 2017, 54(1): 315-322. doi: 10.2514/1.A33514
    [15] 霍霖. 复杂外形高超声速飞行器气动热快速工程估算及热响应分析[D]. 长沙: 国防科学技术大学, 2012.

    HUO L. The rapid engineering aero-heating calculation and thermal respond for complex shaped hypersonic vehicles[D]. Changsha: National University of Defense Technology, 2012(in Chinese).
    [16] 李正洲. 考虑操稳特性的有翼再入飞行器总体多学科设计优化[D]. 南京: 南京航空航天大学, 2018.

    LI Z Z. Multidisciplinary design optimization for winged re-entry vehicles considering stability and control characteristics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [17] 麻卫峰, 王金亮, 张建鹏, 等. 一种改进法向量估算的点云特征提取[J]. 测绘科学, 2021, 46(11): 84-90.

    MA W F, WANG J L, ZHANG J P, et al. Feature extraction from point cloud based on improved normal vector[J]. Science of Surveying and Mapping, 2021, 46(11): 84-90(in Chinese).
    [18] WARE G M, CRUZ C I. Aerodynamic characteristics of the HL-20[J]. Journal of Spacecraft and Rockets, 1993, 30(5): 529-536. doi: 10.2514/3.25562
    [19] SONG W B, KEANE A J. Surrogate-based aerodynamic shape optimization of a civil aircraft engine nacelle[J]. AIAA Journal, 2007, 45(10): 2565-2574. doi: 10.2514/1.30015
    [20] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. doi: 10.1023/A:1008306431147
    [21] ANDERSON M, BURKHALTER J, JENKINS R. Multi-disciplinary intelligent systems approach to solid rocket motor design. I - Single and dual goal optimization[C]//Proceedings of the 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001: 3599.
    [22] 刘传振, 段焰辉, 蔡晋生. 使用类别形状函数的多目标气动外形优化设计[J]. 气体物理, 2016, 1(2): 37-46.

    LIU C Z, DUAN Y H, CAI J S. Multi-objective aerodynamic shape optimization based on class and shape transformation[J]. Physics of Gases, 2016, 1(2): 37-46(in Chinese).
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  99
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 录用日期:  2023-03-10
  • 网络出版日期:  2023-03-30
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答