留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁悬浮控制敏感陀螺转子系统在线动平衡方法

夏长峰 王小乐 李智 蒋成伟 王卫杰 程富强

夏长峰,王小乐,李智,等. 磁悬浮控制敏感陀螺转子系统在线动平衡方法[J]. 北京航空航天大学学报,2024,50(11):3417-3425 doi: 10.13700/j.bh.1001-5965.2022.0852
引用本文: 夏长峰,王小乐,李智,等. 磁悬浮控制敏感陀螺转子系统在线动平衡方法[J]. 北京航空航天大学学报,2024,50(11):3417-3425 doi: 10.13700/j.bh.1001-5965.2022.0852
XIA C F,WANG X L,LI Z,et al. Field balancing method for rotor system of magnetically suspended control and sensing gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3417-3425 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0852
Citation: XIA C F,WANG X L,LI Z,et al. Field balancing method for rotor system of magnetically suspended control and sensing gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3417-3425 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0852

磁悬浮控制敏感陀螺转子系统在线动平衡方法

doi: 10.13700/j.bh.1001-5965.2022.0852
基金项目: 国家自然科学基金(52075545)
详细信息
    通讯作者:

    E-mail:superxiacf@163.com

  • 中图分类号: V448.2

Field balancing method for rotor system of magnetically suspended control and sensing gyro

Funds: National Natural Science Foundation of China (52075545)
More Information
  • 摘要:

    为改善磁悬浮控制敏感陀螺(MSCSG)转子质量分布,减小转子偏转系统动不平衡振动,提出基于电流响应的磁悬浮转子在线动平衡方法。分析了磁轴承-转子系统的工作原理;确定了质量分布不平衡条件下转子几何轴与惯性轴间的关系模型,对转子静不平衡和动不平衡进行了定量分析;在此基础上,提出利用洛伦兹力磁轴承(LFMB)线性特性的优势,采用二次修正法推导转子校正质量与控制电流间的关系式,对转子不平衡质量进行在线校正,进而改善转子质量分布,从根源上减小转子系统不平衡振动。在线动平衡实验结果表明:所提方法可将转子系统动不平衡振动峰值降低67.7%,验证了方法的有效性。

     

  • 图 1  MSCSG结构示意图

    Figure 1.  Structure diagram of MSCSG

    图 2  LFMB-转子系统结构

    Figure 2.  LFMB-rotor system structure

    图 3  MSCSG转子惯性轴与几何轴关系

    Figure 3.  Relation between inertial axis and geometric axis of rotor in MSCSG

    图 4  MSCSG转子静不平衡俯视图

    Figure 4.  Top view of static unbalance in MSCSG rotor

    图 5  MSCSG转子动不平衡俯视图

    Figure 5.  Top view of dynamic unbalance in MSCSG rotor

    图 6  MSCSG转子在线动平衡原理

    Figure 6.  Schematic diagram of field balancing for MSCSG rotor

    图 7  MSCSG实验系统

    Figure 7.  Experimental setup of MSCSG system

    图 8  不平衡质量分布变化示意图

    Figure 8.  Change of unbalanced mass distribution

    图 9  在线动平衡前后转子偏转响应

    Figure 9.  Rotor tilt response before and after on-line dynamic balancing

    表  1  MSCSG转子系统的主要参数

    Table  1.   Main parameters of rotor system in MSCSG

    $ {J_{\textit{z}}} $/(kg·m²) $ m $/kg $ {k_{{I}}} $/(N·A−1) n lma/m L2/m L/m $ {J_{\text{rad}}} $/(kg·m²) $ {k_i} $/(N·A−1) $ {k_h} $/( N·m−6) B/T L1/m $ r $/m
    0.0287 8.951 28.91 200 0.059 0.024 0.062 0.0097 19.84 −0.58 0.4 0.024 0.084
    下载: 导出CSV
  • [1] YU C M, CAI Y W, REN Y, et al. Angular rate sensitive method of magnetically suspended control & sensing gyroscope based on deflection current and angle[J]. IEEE Sensors Journal, 2021, 21(10): 12068-12076. doi: 10.1109/JSEN.2021.3063949
    [2] CHEN X C, CAI Y W, REN Y, et al. Spacecraft angular rates and angular acceleration estimation using single-gimbal magnetically suspended control moment gyros[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 440-450. doi: 10.1109/TIE.2018.2826468
    [3] 夏长峰, 蔡远文, 任元, 等. 磁悬浮控制敏感陀螺转子偏转通道稳定控制方法[J]. 控制理论与应用, 2020, 23(7): 1535-1543. doi: 10.7641/CTA.2020.90340

    XIA C F, CAI Y W, REN Y, et al. Stable control method for rotor tilt channel in magnetically suspended control and sensing gyro[J]. Control Theory and Applications, 2020, 23(7): 1535-1543(in Chinese). doi: 10.7641/CTA.2020.90340
    [4] 于春淼, 汪洲, 任元, 等. 基于逆系统解耦的MSCSG姿态测量方法[J]. 北京航空航天大学学报, 2020, 46(1): 150-158.

    YU C M, WANG Z, REN Y, et al. MSCSG attitude measurement method based on inverse system decoupling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 150-158(in Chinese).
    [5] CAI Y W, YU C M, REN Y, et al. High precision attitude-rate measurement of magnetically suspended control and sensing gyroscope using variational mode decomposition and wavelet transform[J]. IEEE Sensors Journal, 2022, 22(2): 1188-1198. doi: 10.1109/JSEN.2021.3131994
    [6] YU Y J, YANG Z H, HAN C, et al. Active vibration control of magnetically suspended wheel using active shaft deflection[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6528-6537. doi: 10.1109/TIE.2017.2682786
    [7] CHEN Q, LIU G, HAN B C. Unbalance vibration suppression for AMBs system using adaptive Notch filter[J]. Mechanical Systems and Signal Processing, 2017, 93(9): 136-150.
    [8] 汤继强, 崔旭, 袁新竹, 等. 磁悬浮控制力矩陀螺高速转子的高精度位置控制[J]. 光学 精密工程, 2020, 28(3): 659-670. doi: 10.3788/OPE.20202803.0659

    TANG J Q, CUI X, YUAN X Z, et al. High-precision position control for MSCMG’s high-speed rotor[J]. Optics and Precision Engineering, 2020, 28(3): 659-670(in Chinese). doi: 10.3788/OPE.20202803.0659
    [9] 夏长峰, 蔡远文, 任元, 等. MSCSG转子不平衡振动原理分析与建模[J]. 北京航空航天大学学报, 2018, 44(11): 2321-2328.

    XIA C F, CAI Y W, REN Y, et al. Principle analysis and modeling of rotor imbalance vibration in magnetically suspended control and sensing gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2321-2328(in Chinese).
    [10] 刘超, 刘刚, 赵光再. 主被动磁悬浮高速转子系统的自动平衡控制[J]. 光学 精密工程, 2015, 23(3): 714-722. doi: 10.3788/OPE.20152303.0714

    LIU C, LIU G, ZHAO G Z. Autobalancing control of high-speed rotor suspended by active-passive hybrid magnetic bearings[J]. Optics and Precision Engineering, 2015, 23(3): 714-722(in Chinese). doi: 10.3788/OPE.20152303.0714
    [11] 彭聪. 磁悬浮飞轮不平衡振动控制方法及实验研究[D]. 北京: 北京航空航天大学, 2016: 15-18.

    PENG C. Research on vibration suppression for magnetically suspended flywheel in the full speed range[D]. Beijing: Beihang University, 2016: 15-18(in Chinese).
    [12] CUI P L, HE J X, FANG J C, et al. Research on method for adaptive imbalance vibration control for rotor of variable-speed MSCMG with active-passive magnetic bearings[J]. Journal of Vibration and Control, 2017, 23(2): 167-180. doi: 10.1177/1077546315576430
    [13] REN Y, CHEN X C, CAI Y W, et al. Adaptive robust sliding mode simultaneous control of spacecraft attitude and micro-vibration based on magnetically suspended control and sensitive gyro[J]. Journal of Aerospace Engineering, 2020, 234(15): 2197-2210.
    [14] LIU G, LI J L, ZHENG S Q, et al. Suppression of synchronous current using double input improved adaptive Notch filter algorithm[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8599-8607. doi: 10.1109/TIE.2019.2947852
    [15] CUI P L, WANG Q R, ZHANG G X, et al. Hybrid fractional repetitive control for magnetically suspended rotor systems[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3491-3495.
    [16] LIU C, LIU G, FANG J C. Feedback linearization and extended state observer-based control for rotor-AMBs system with mismatched uncertainties[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1313-1322. doi: 10.1109/TIE.2016.2612622
    [17] ZHENG S Q, FENG R. Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive Notch filter[J]. Journal of Sound & Vibration, 2016, 366(3): 1-14.
    [18] 王英广, 房建成, 郑世强, 等. 磁悬浮电机的高效高精度在线动平衡[J]. 光学 精密工程, 2013, 21(11): 2884-2892. doi: 10.3788/OPE.20132111.2884

    WANG Y G, FANG J C, ZHENG S Q, et al. Field balancing of magnetically levitated motor in high-efficiency and high-accuracy[J]. Optics and Precision Engineering, 2013, 21(11): 2884-2892(in Chinese). doi: 10.3788/OPE.20132111.2884
    [19] 夏长峰. 磁悬浮控制敏感陀螺转子偏转控制方法及实验研究[D]. 北京: 航天工程大学, 2018: 11-15.

    XIA C F. Study on tilt control approach and experiment for the rotor of MSCSG[D]. Beijing: Space Engineering University, 2018: 11-15(in Chinese).
    [20] LIU C, LIU G. Field dynamic balancing for rigid rotor-AMB system in a magnetically suspended flywheel[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 1140-1150. doi: 10.1109/TMECH.2015.2495225
    [21] 张珂, 张驰宇, 张丽秀, 等. 电磁滑环式在线动平衡系统特性分析与实验[J]. 振动、测试与诊断, 2018, 38(1): 34-38.

    ZHANG K, ZHANG C Y, ZHANG L X, et al. Performance analysis and experiment of electromagnetic ring balancer during operation[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(1): 34-38(in Chinese).
    [22] 韩辅君, 房建成. 磁悬浮飞轮转子系统的现场动平衡方法[J]. 航空学报, 2010, 31(1): 184-190.

    HAN F J, FANG J C. Field balancing method for rotor system of a magnetic suspending flywheel[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 184-190(in Chinese).
    [23] 王英广. 磁悬浮挠性转子过临界转速控制及实验研究[D]. 北京: 北京航空航天大学, 2014: 47-57.

    WANG Y G. Study on control approach and experiment for the magnetically levitated flexible rotor passing through the critical speed[D]. Beijing: Beihang University, 2014: 47-57(in Chinese).
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  105
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-11-23
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答