Field balancing method for rotor system of magnetically suspended control and sensing gyro
-
摘要:
为改善磁悬浮控制敏感陀螺(MSCSG)转子质量分布,减小转子偏转系统动不平衡振动,提出基于电流响应的磁悬浮转子在线动平衡方法。分析了磁轴承-转子系统的工作原理;确定了质量分布不平衡条件下转子几何轴与惯性轴间的关系模型,对转子静不平衡和动不平衡进行了定量分析;在此基础上,提出利用洛伦兹力磁轴承(LFMB)线性特性的优势,采用二次修正法推导转子校正质量与控制电流间的关系式,对转子不平衡质量进行在线校正,进而改善转子质量分布,从根源上减小转子系统不平衡振动。在线动平衡实验结果表明:所提方法可将转子系统动不平衡振动峰值降低67.7%,验证了方法的有效性。
Abstract:A field balancing solution based on current response is proposed to optimize mass distribution and eliminate dynamic unbalanced vibration in the rotor tilt mechanism of a magnetically suspended control and sensing gyro (MSCSG). The working principle of the magnetic bearing-rotor system is first analyzed. Then the geometric analytic relation between the geometric and inertial axis of the rotor is achieved on the condition that the rotor is unbalanced, and the static and dynamic unbalance of the rotor are quantitatively analyzed. On the basis of this, a secondary correction method with the benefit of excellent linearity in Lorentz force magnetic bearing (LFMB) is used to infer the relationship between imbalanced mass and rotor control current. Thus the rotor mass distribution is improved by field balancing, so as to reduce the unbalanced vibration in the rotor system from the root. Experiment results of field balancing show that the proposed method can reduce the dynamic unbalance vibration peak value of the rotor system by 67.7% which verifies the effectiveness of the proposed method.
-
表 1 MSCSG转子系统的主要参数
Table 1. Main parameters of rotor system in MSCSG
$ {J_{\textit{z}}} $/(kg·m²) $ m $/kg $ {k_{{I}}} $/(N·A−1) n lma/m L2/m L/m $ {J_{\text{rad}}} $/(kg·m²) $ {k_i} $/(N·A−1) $ {k_h} $/( N·m−6) B/T L1/m $ r $/m 0.0287 8.951 28.91 200 0.059 0.024 0.062 0.0097 19.84 −0.58 0.4 0.024 0.084 -
[1] YU C M, CAI Y W, REN Y, et al. Angular rate sensitive method of magnetically suspended control & sensing gyroscope based on deflection current and angle[J]. IEEE Sensors Journal, 2021, 21(10): 12068-12076. doi: 10.1109/JSEN.2021.3063949 [2] CHEN X C, CAI Y W, REN Y, et al. Spacecraft angular rates and angular acceleration estimation using single-gimbal magnetically suspended control moment gyros[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 440-450. doi: 10.1109/TIE.2018.2826468 [3] 夏长峰, 蔡远文, 任元, 等. 磁悬浮控制敏感陀螺转子偏转通道稳定控制方法[J]. 控制理论与应用, 2020, 23(7): 1535-1543. doi: 10.7641/CTA.2020.90340XIA C F, CAI Y W, REN Y, et al. Stable control method for rotor tilt channel in magnetically suspended control and sensing gyro[J]. Control Theory and Applications, 2020, 23(7): 1535-1543(in Chinese). doi: 10.7641/CTA.2020.90340 [4] 于春淼, 汪洲, 任元, 等. 基于逆系统解耦的MSCSG姿态测量方法[J]. 北京航空航天大学学报, 2020, 46(1): 150-158.YU C M, WANG Z, REN Y, et al. MSCSG attitude measurement method based on inverse system decoupling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 150-158(in Chinese). [5] CAI Y W, YU C M, REN Y, et al. High precision attitude-rate measurement of magnetically suspended control and sensing gyroscope using variational mode decomposition and wavelet transform[J]. IEEE Sensors Journal, 2022, 22(2): 1188-1198. doi: 10.1109/JSEN.2021.3131994 [6] YU Y J, YANG Z H, HAN C, et al. Active vibration control of magnetically suspended wheel using active shaft deflection[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6528-6537. doi: 10.1109/TIE.2017.2682786 [7] CHEN Q, LIU G, HAN B C. Unbalance vibration suppression for AMBs system using adaptive Notch filter[J]. Mechanical Systems and Signal Processing, 2017, 93(9): 136-150. [8] 汤继强, 崔旭, 袁新竹, 等. 磁悬浮控制力矩陀螺高速转子的高精度位置控制[J]. 光学 精密工程, 2020, 28(3): 659-670. doi: 10.3788/OPE.20202803.0659TANG J Q, CUI X, YUAN X Z, et al. High-precision position control for MSCMG’s high-speed rotor[J]. Optics and Precision Engineering, 2020, 28(3): 659-670(in Chinese). doi: 10.3788/OPE.20202803.0659 [9] 夏长峰, 蔡远文, 任元, 等. MSCSG转子不平衡振动原理分析与建模[J]. 北京航空航天大学学报, 2018, 44(11): 2321-2328.XIA C F, CAI Y W, REN Y, et al. Principle analysis and modeling of rotor imbalance vibration in magnetically suspended control and sensing gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2321-2328(in Chinese). [10] 刘超, 刘刚, 赵光再. 主被动磁悬浮高速转子系统的自动平衡控制[J]. 光学 精密工程, 2015, 23(3): 714-722. doi: 10.3788/OPE.20152303.0714LIU C, LIU G, ZHAO G Z. Autobalancing control of high-speed rotor suspended by active-passive hybrid magnetic bearings[J]. Optics and Precision Engineering, 2015, 23(3): 714-722(in Chinese). doi: 10.3788/OPE.20152303.0714 [11] 彭聪. 磁悬浮飞轮不平衡振动控制方法及实验研究[D]. 北京: 北京航空航天大学, 2016: 15-18.PENG C. Research on vibration suppression for magnetically suspended flywheel in the full speed range[D]. Beijing: Beihang University, 2016: 15-18(in Chinese). [12] CUI P L, HE J X, FANG J C, et al. Research on method for adaptive imbalance vibration control for rotor of variable-speed MSCMG with active-passive magnetic bearings[J]. Journal of Vibration and Control, 2017, 23(2): 167-180. doi: 10.1177/1077546315576430 [13] REN Y, CHEN X C, CAI Y W, et al. Adaptive robust sliding mode simultaneous control of spacecraft attitude and micro-vibration based on magnetically suspended control and sensitive gyro[J]. Journal of Aerospace Engineering, 2020, 234(15): 2197-2210. [14] LIU G, LI J L, ZHENG S Q, et al. Suppression of synchronous current using double input improved adaptive Notch filter algorithm[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8599-8607. doi: 10.1109/TIE.2019.2947852 [15] CUI P L, WANG Q R, ZHANG G X, et al. Hybrid fractional repetitive control for magnetically suspended rotor systems[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3491-3495. [16] LIU C, LIU G, FANG J C. Feedback linearization and extended state observer-based control for rotor-AMBs system with mismatched uncertainties[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1313-1322. doi: 10.1109/TIE.2016.2612622 [17] ZHENG S Q, FENG R. Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive Notch filter[J]. Journal of Sound & Vibration, 2016, 366(3): 1-14. [18] 王英广, 房建成, 郑世强, 等. 磁悬浮电机的高效高精度在线动平衡[J]. 光学 精密工程, 2013, 21(11): 2884-2892. doi: 10.3788/OPE.20132111.2884WANG Y G, FANG J C, ZHENG S Q, et al. Field balancing of magnetically levitated motor in high-efficiency and high-accuracy[J]. Optics and Precision Engineering, 2013, 21(11): 2884-2892(in Chinese). doi: 10.3788/OPE.20132111.2884 [19] 夏长峰. 磁悬浮控制敏感陀螺转子偏转控制方法及实验研究[D]. 北京: 航天工程大学, 2018: 11-15.XIA C F. Study on tilt control approach and experiment for the rotor of MSCSG[D]. Beijing: Space Engineering University, 2018: 11-15(in Chinese). [20] LIU C, LIU G. Field dynamic balancing for rigid rotor-AMB system in a magnetically suspended flywheel[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 1140-1150. doi: 10.1109/TMECH.2015.2495225 [21] 张珂, 张驰宇, 张丽秀, 等. 电磁滑环式在线动平衡系统特性分析与实验[J]. 振动、测试与诊断, 2018, 38(1): 34-38.ZHANG K, ZHANG C Y, ZHANG L X, et al. Performance analysis and experiment of electromagnetic ring balancer during operation[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(1): 34-38(in Chinese). [22] 韩辅君, 房建成. 磁悬浮飞轮转子系统的现场动平衡方法[J]. 航空学报, 2010, 31(1): 184-190.HAN F J, FANG J C. Field balancing method for rotor system of a magnetic suspending flywheel[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 184-190(in Chinese). [23] 王英广. 磁悬浮挠性转子过临界转速控制及实验研究[D]. 北京: 北京航空航天大学, 2014: 47-57.WANG Y G. Study on control approach and experiment for the magnetically levitated flexible rotor passing through the critical speed[D]. Beijing: Beihang University, 2014: 47-57(in Chinese).