Influencing analysis of temperature controlling accuracy of loop heat pipes and capillary limit prediction
-
摘要:
环路热管具备无振动、传热能力强、控温精度高、传输距离远等优点,被广泛应用于航天器平台和载荷的热控制领域。控温精度和传热极限作为环路热管的关键性能参数,是环路热管设计和应用领域的研究重点。分析姿态和控温点位置对环路热管控温精度的影响规律。研究发现,重力条件下环路热管姿态会影响储液器内气液分布。当储液器控温点处于饱和蒸气区时,控温精度达到±0.2 ℃,优于控温点处于纯液相区(±0.6 ℃)。同时,通过分析毛细芯内气液分布,对环路热管毛细极限预测模型进行修正。通过实验验证,修正后模型可以较好地预测环路热管的毛细极限。
Abstract:Loop heat pipe possesses the advantages of no vibration, strong heat transfer capability, high temperature controlling accuracy, and long transmission distance, which is widely applied in the field of thermal control of spacecraft platforms and load. Temperature controlling accuracy and heat transfer limit, as key performance parameters of loop heat pipes, are the research focuses in the design and application of loop heat pipes. In this paper, the influence of attitude and temperature controlling position on temperature controlling accuracy of loop heat pipes was investigated. The results show that the attitude of loop heat pipes will affect gas-liquid distribution in the compensation chamber in the gravity environment. When the temperature controlling point is located in the saturated vapor zone in the compensation chamber, the temperature controlling accuracy is close to ±0.2 °C, which is higher than temperature controlling point in the pure-liquid zone (±0.6 °C). Meanwhile, the capillary limit prediction model of loop heat pipes is modified by analyzing gas-liquid distribution in capillary cores. The experimental results show that the modified model can predict the capillary limit of loop heat pipes well.
-
表 1 环路热管设计参数
Table 1. Design parameters of loop heat pipe
工质 工质
充装量/g毛细芯
材料毛细芯
总长/
mm毛细芯
等效
孔径/μm毛细芯
孔隙率/%毛细芯
渗透率/
m2冷凝管路
内径/mm冷凝器
长度/m冷凝器
逆重力
高度/cm蒸气管路
内径/mm蒸气管路
长度/m液体管路
内径/mm液体管路
长度/m储液器
容积/mL高纯氨 44 镍 200 1.5 48.4 1.3×10-14 2 1.8 50 2 4.3 2 2.2 52 -
[1] 张畅, 谢荣建, 张添, 等. 液氮温区平板蒸发器环路热管实验研究[J]. 北京航空航天大学学报, 2019, 45(6): 1211-1217.ZHANG C, XIE R J, ZHANG T, et al. Experimental study on a liquid nitrogen temperature region loop heat pipe with flat evaporator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1211-1217(in Chinese). [2] ZHANG X X, ZHAO X D, XU J H, et al. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system[J]. Applied Energy, 2013, 102: 1229-1245. doi: 10.1016/j.apenergy.2012.06.039 [3] MAYDANIK Y F, VERSHININ S V. Development and tests of ammonia miniature loop heat pipes with cylindrical evaporators[J]. Applied Thermal Engineering, 2009, 29(11-12): 2297-2301. doi: 10.1016/j.applthermaleng.2008.11.016 [4] CHO H, JIN L X, KIM S, et al. Experimental validation of heat switch capability of cryogenic loop heat pipe[J]. Cryogenics, 2022, 121: 103403. doi: 10.1016/j.cryogenics.2021.103403 [5] XIONG C W, BAI L Z, LI H C, et al. Experimental study on a R134a loop heat pipe with high heat transfer capacity[J]. Heat and Mass Transfer, 2022, 58(6): 903-916. doi: 10.1007/s00231-021-03147-1 [6] LI X Q, XU B Q, ZHANG G D, et al. Experimental investigation on the impact of pressure head of evaporation during the loop heat pipe operation[J]. Applied Thermal Engineering, 2021, 185: 116455. [7] 谢永奇, 于印, 解立垚, 等. 加速度作用下环路热管工作特性实验[J]. 北京航空航天大学学报, 2015, 41(1): 38-44.XIE Y Q, YU Y, XIE L Y, et al. Experimental investigation on operational performance of loop heat pipe subjected to acceleration force[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 38-44(in Chinese). [8] PASTUKHOV V G, MAYDANIK Y F. Experimental investigations of a loop heat pipe with active control of the operating temperature[J]. International Journal of Thermal Sciences, 2022, 172: 107351. doi: 10.1016/j.ijthermalsci.2021.107351 [9] BAI L Z, TAO Y B, GUO Y D, et al. Startup characteristics of a dual compensation chamber loop heat pipe with an extended bayonet tube[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119066. doi: 10.1016/j.ijheatmasstransfer.2019.119066 [10] KU J. Operating characteristics of loop heat pipes [C]//Proceedings of the 29th International Conference on Environmental Systems. Washington, D.C.: NASA, 1999: 1-16. [11] GAO T, YANG T, ZHAO S L, et al. The design and application of temperature control loop heat pipe for space CCD camera[C]//Proceedings of the International Symposium of Space Optical Instrument and Application. Berlin: Springer, 2018: 65-74. [12] NIKITKIN M, KOTLYAROV E, SEROV G. Basics of loop heat pipe temperature control[J]. SAE International, 1999: 1-9. [13] 赵石磊, 高腾, 杨涛, 等. 环路热管精密控温性能的热真空实验研究[J]. 制冷学报, 2020, 41(1): 154-160.ZHAO S L, GAO T, YANG T, et al. Thermal vacuum test on the precise temperature controlling performance of loop heat pipe[J]. Journal of Refrigeration, 2020, 41(1): 154-160(in Chinese). [14] WANG H F, LIN G P, SHEN X B, et al. Effect of evaporator/condenser elevations on a loop heat pipe with non-condensable gas[J]. Applied Thermal Engineering, 2020, 180: 115711. doi: 10.1016/j.applthermaleng.2020.115711 [15] POUZET E, JOLY J L, PLATEL V, et al. Dynamic response of a capillary pumped loop subjected to various heat load transients[J]. International Journal of Heat and Mass Transfer, 2004, 47(10-11): 2293-2316. doi: 10.1016/j.ijheatmasstransfer.2003.11.003 [16] QU Y, QIAO S, ZHOU D. Steady-state modelling of dual-evaporator loop heat pipe[J]. Applied Thermal Engineering, 2021, 193: 116933.