留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环路热管控温精度影响分析与毛细极限预测

方泽农 刘畅 张传强 徐亚威 张红星 苗建印

方泽农,刘畅,张传强,等. 环路热管控温精度影响分析与毛细极限预测[J]. 北京航空航天大学学报,2024,50(12):3788-3793 doi: 10.13700/j.bh.1001-5965.2022.0886
引用本文: 方泽农,刘畅,张传强,等. 环路热管控温精度影响分析与毛细极限预测[J]. 北京航空航天大学学报,2024,50(12):3788-3793 doi: 10.13700/j.bh.1001-5965.2022.0886
FANG Z N,LIU C,ZHANG C Q,et al. Influencing analysis of temperature controlling accuracy of loop heat pipes and capillary limit prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3788-3793 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0886
Citation: FANG Z N,LIU C,ZHANG C Q,et al. Influencing analysis of temperature controlling accuracy of loop heat pipes and capillary limit prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3788-3793 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0886

环路热管控温精度影响分析与毛细极限预测

doi: 10.13700/j.bh.1001-5965.2022.0886
基金项目: 卓越青年科学基金(2020-JCJQ-ZQ-042)
详细信息
    通讯作者:

    E-mail:fzn501@126.com

  • 中图分类号: V476.2

Influencing analysis of temperature controlling accuracy of loop heat pipes and capillary limit prediction

Funds: Science Foundation for Distinguished Young Scholars (2020-JCJQ-ZQ-042)
More Information
  • 摘要:

    环路热管具备无振动、传热能力强、控温精度高、传输距离远等优点,被广泛应用于航天器平台和载荷的热控制领域。控温精度和传热极限作为环路热管的关键性能参数,是环路热管设计和应用领域的研究重点。分析姿态和控温点位置对环路热管控温精度的影响规律。研究发现,重力条件下环路热管姿态会影响储液器内气液分布。当储液器控温点处于饱和蒸气区时,控温精度达到±0.2 ℃,优于控温点处于纯液相区(±0.6 ℃)。同时,通过分析毛细芯内气液分布,对环路热管毛细极限预测模型进行修正。通过实验验证,修正后模型可以较好地预测环路热管的毛细极限。

     

  • 图 1  环路热管结构和测温点分布

    Figure 1.  Structure of loop heat pipe and distribution of temperature measuring points

    图 2  待机工况和工作工况切换时,环路热管温度变化

    Figure 2.  Temperature variation of loop heat pipe when switched between standby mode and working mode

    图 3  控温点位置对竖直姿态环路热管运行稳定性的影响

    Figure 3.  Influence of temperature controlling point position on working stability of loop heat pipe with vertical attitude

    图 4  控温点位置对水平姿态环路热管运行稳定性的影响

    Figure 4.  Influence of temperature controlling point position on working stability of loop heat pipe with horizontal attitude

    图 5  环路热管传热性能

    Figure 5.  Heat transfer performance of loop heat pipe

    表  1  环路热管设计参数

    Table  1.   Design parameters of loop heat pipe

    工质 工质
    充装量/g
    毛细芯
    材料
    毛细芯
    总长/
    mm
    毛细芯
    等效
    孔径/μm
    毛细芯
    孔隙率/%
    毛细芯
    渗透率/
    m2
    冷凝管路
    内径/mm
    冷凝器
    长度/m
    冷凝器
    逆重力
    高度/cm
    蒸气管路
    内径/mm
    蒸气管路
    长度/m
    液体管路
    内径/mm
    液体管路
    长度/m
    储液器
    容积/mL
    高纯氨 44 200 1.5 48.4 1.3×10-14 2 1.8 50 2 4.3 2 2.2 52
    下载: 导出CSV
  • [1] 张畅, 谢荣建, 张添, 等. 液氮温区平板蒸发器环路热管实验研究[J]. 北京航空航天大学学报, 2019, 45(6): 1211-1217.

    ZHANG C, XIE R J, ZHANG T, et al. Experimental study on a liquid nitrogen temperature region loop heat pipe with flat evaporator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1211-1217(in Chinese).
    [2] ZHANG X X, ZHAO X D, XU J H, et al. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system[J]. Applied Energy, 2013, 102: 1229-1245. doi: 10.1016/j.apenergy.2012.06.039
    [3] MAYDANIK Y F, VERSHININ S V. Development and tests of ammonia miniature loop heat pipes with cylindrical evaporators[J]. Applied Thermal Engineering, 2009, 29(11-12): 2297-2301. doi: 10.1016/j.applthermaleng.2008.11.016
    [4] CHO H, JIN L X, KIM S, et al. Experimental validation of heat switch capability of cryogenic loop heat pipe[J]. Cryogenics, 2022, 121: 103403. doi: 10.1016/j.cryogenics.2021.103403
    [5] XIONG C W, BAI L Z, LI H C, et al. Experimental study on a R134a loop heat pipe with high heat transfer capacity[J]. Heat and Mass Transfer, 2022, 58(6): 903-916. doi: 10.1007/s00231-021-03147-1
    [6] LI X Q, XU B Q, ZHANG G D, et al. Experimental investigation on the impact of pressure head of evaporation during the loop heat pipe operation[J]. Applied Thermal Engineering, 2021, 185: 116455.
    [7] 谢永奇, 于印, 解立垚, 等. 加速度作用下环路热管工作特性实验[J]. 北京航空航天大学学报, 2015, 41(1): 38-44.

    XIE Y Q, YU Y, XIE L Y, et al. Experimental investigation on operational performance of loop heat pipe subjected to acceleration force[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 38-44(in Chinese).
    [8] PASTUKHOV V G, MAYDANIK Y F. Experimental investigations of a loop heat pipe with active control of the operating temperature[J]. International Journal of Thermal Sciences, 2022, 172: 107351. doi: 10.1016/j.ijthermalsci.2021.107351
    [9] BAI L Z, TAO Y B, GUO Y D, et al. Startup characteristics of a dual compensation chamber loop heat pipe with an extended bayonet tube[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119066. doi: 10.1016/j.ijheatmasstransfer.2019.119066
    [10] KU J. Operating characteristics of loop heat pipes [C]//Proceedings of the 29th International Conference on Environmental Systems. Washington, D.C.: NASA, 1999: 1-16.
    [11] GAO T, YANG T, ZHAO S L, et al. The design and application of temperature control loop heat pipe for space CCD camera[C]//Proceedings of the International Symposium of Space Optical Instrument and Application. Berlin: Springer, 2018: 65-74.
    [12] NIKITKIN M, KOTLYAROV E, SEROV G. Basics of loop heat pipe temperature control[J]. SAE International, 1999: 1-9.
    [13] 赵石磊, 高腾, 杨涛, 等. 环路热管精密控温性能的热真空实验研究[J]. 制冷学报, 2020, 41(1): 154-160.

    ZHAO S L, GAO T, YANG T, et al. Thermal vacuum test on the precise temperature controlling performance of loop heat pipe[J]. Journal of Refrigeration, 2020, 41(1): 154-160(in Chinese).
    [14] WANG H F, LIN G P, SHEN X B, et al. Effect of evaporator/condenser elevations on a loop heat pipe with non-condensable gas[J]. Applied Thermal Engineering, 2020, 180: 115711. doi: 10.1016/j.applthermaleng.2020.115711
    [15] POUZET E, JOLY J L, PLATEL V, et al. Dynamic response of a capillary pumped loop subjected to various heat load transients[J]. International Journal of Heat and Mass Transfer, 2004, 47(10-11): 2293-2316. doi: 10.1016/j.ijheatmasstransfer.2003.11.003
    [16] QU Y, QIAO S, ZHOU D. Steady-state modelling of dual-evaporator loop heat pipe[J]. Applied Thermal Engineering, 2021, 193: 116933.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  105
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2022-12-09
  • 网络出版日期:  2023-01-04
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答