Design and analysis of space repeatable mechanical locking and electromagnetic unlocking mechanisms
-
摘要:
针对空间航天器锁紧装置驱动链长、占用物理空间大的问题,结合摩擦自锁理论,设计了空间可重复机械锁紧及电磁解锁机构,利用多种有限元分析软件分别研究了机构的机械承载性能和电磁学性能。结果表明,在轴向最大锁紧承载工况下,锁紧珠与压板、顶杆、锁紧器外壳间的接触力随时间增加而线性增大,满足力的传递性准则和平衡准则,主要承载部件顶杆和锁紧珠所受的等效应力和变形量与时间呈线性关系,最大等效应力远小于材料的屈服极限强度,装置处于小变形范围。当线圈通入额定电流时,由于电阻发热效应,等电流密度的线圈内部出现稳定的欧姆损耗,电磁解锁装置内部近似为匀强磁场,铁芯的磁聚作用增强了端面的磁感应强度。对设计的空间可重复机械锁紧及电磁解锁机构进行样机制造,并进行原理验证,为空间在轨对接接口的可重复锁紧机构设计和分析提供理论参考。
Abstract:The space locking mechanism always faces the problem of a long drive chain, as well as takes large physical space. In this work, a space repeatable mechanical locking and electromagnetic unlocking mechanism has been proposed on the basis of friction self-locking theory. Various finite element analysis software has been used to study the bearing capacity and electromagnetic property of the reusable locking mechanism. The results show that under the maximum axial locking load, the contact forces increase linearly with the increasing time between the steel locking ball and the pressing plate, the ejector pin, as well as the shell. It meets the transitivity criterion and the equilibrium criterion of force. The equivalent stress and deformation of the ejector pin and the lock bead are linear with time as well. The maximum equivalent stress is far less than the yield strength of the material and the device is in a small deformation range. When the rated current is applied to the coil, a stable ohmic loss occurs in the coil with equal current density due to the resistance heating effect. The electromagnetic unlocking technology maintains a roughly constant magnetic field inside. The magnetic agglomeration action in the iron core enhances the magnetic induction intensity on the end face. After the concept was established, a prototype for an electromagnetic unlocking and mechanical locking system in space was produced. This work presents a perspective on the design and analysis of the reusable locking mechanism for the on-orbital docking interfaces.
-
表 1 铁芯构型参数改进
Table 1. Improvement of core configuration parameters
铁芯构型 铁芯中心轴直径/mm 原构型 5 改进1 10 改进2 13 改进3 16 表 2 部件力学性能参数表
Table 2. Mechanical property parameters of components
部件名称 弹性模量/GPa 泊松比 屈服强度/MPa 锁紧珠 206 0.3 785 其他部件 107.8 0.3 825 -
[1] EBERLE S, FALLER R, OHNDORF A. On-orbit servicing mission operations at GSOC[C]// Proceedings of the SpaceOps 2010 Conference. Reston: AIAA, 2010. [2] HAYS A B, TCHORYK P, PAVLICH J C, et al. Advancements in design of an autonomous satellite docking system[C]//Spacecraft Platforms and Infrastructure. Washington: SPIE, 2004, 5419: 107-118. [3] VINALS J, URGOITI E, GUERRA G, et al. Multi-functional interface for flexibility and reconfigurability of future European space robotic systems[J]. Advances in Astronautics Science and Technology, 2018, 1(1): 119-133. doi: 10.1007/s42423-018-0009-1 [4] MEDINA A, TOMASSINI A, SUATONI M, et al. Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft[J]. Acta Astronautica, 2017, 134: 1-10. doi: 10.1016/j.actaastro.2017.01.022 [5] PEI J, MURCHISON L, STEWART V, et al. Autonomous rendezvous and docking of two 3U cubesats using a novel permanent-magnet docking mechanism[C]// Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. [6] WOKES D, SMAIL S, PALMER P, et al. Pose estimation for In-orbit self-assembly of intelligent self-powered modules[C]// AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 6291. [7] RODGERS L, NOLET S, MILLER D W. Development of the miniature video docking sensor[C]// SPIE Proceedings of Modeling, Simulation, and Verification of Space-based Systems III. SPIE, 2006: 121-132. [8] 原永亮, 杨臻, 张秀华. 基于ADAMS某新型电磁对接机构结合过程分析[J]. 机械设计, 2016, 33(10): 51-54.YUAN Y L, YANG Z, ZHANG X H. Binding process analysis of a novel electromagnetic docking mechanism based on ADAMS[J]. Journal of Machine Design, 2016, 33(10): 51-54 (in Chinese). [9] FREDRICKSON S E, ABBOTT L W, DURAN S, et al. Mini AERCam: Development of a free-flying nanosatellite inspection robot[C]// Space Systems Technology and Operations. Washington: SPIE, 2003, 5088: 97-111. [10] FREDRICKSON S E, DURAN S, HOWARD N, et al. Application of the mini aercam free flyer for orbital inspection[C]//Spacecraft Platforms and Infrastructure. Washington: SPIE, 2004, 5419: 26-35. [11] 姜金鹏, 杨臻, 王昊东. 空间电磁柔性对接技术[J]. 兵器装备工程学报, 2021, 42(2): 63-67. doi: 10.11809/bqzbgcxb2021.02.012JIANG J P, YANG Z, WANG H D. Space electromagnetic flexible docking technology[J]. Journal of Ordnance Equipment Engineering, 2021, 42(2): 63-67 (in Chinese). doi: 10.11809/bqzbgcxb2021.02.012 [12] 慕忠成, 叶东, 吴树范. 纳卫星电磁对接机构技术[J]. 北京航空航天大学学报, 2018, 44(12): 2644-2650.MU Z C, YE D, WU S F. Technology of electromagnetic docking mechanism using nanosatellites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2644-2650 (in Chinese). [13] KWON D W. Propellantless formation flight applications using electromagnetic satellite formations[J]. Acta Astronautica, 2010, 67(9): 1189-1201. [14] SCHWEIGHART S A, SEDWICK R J. Explicit dipole trajectory solution for electromagnetically controlled spacecraft clusters[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1225-1235. doi: 10.2514/1.46363 [15] 侯振东, 曹喜滨, 张锦绣. 近地轨道电磁编队飞行相对轨道动力学建模[J]. 哈尔滨工业大学学报, 2012, 44(3): 6-12. doi: 10.11918/j.issn.0367-6234.2012.03.002HOU Z D, CAO X B, ZHANG J X. Relative orbital dynamics to LEO electromagnetic formation flying[J]. Journal of Harbin Institute of Technology, 2012, 44(3): 6-12 (in Chinese). doi: 10.11918/j.issn.0367-6234.2012.03.002 [16] SOLTANPOUR M R, KHOOBAN M H, KHALGHANI M R. An optimal and intelligent control strategy for a class of nonlinear systems: adaptive fuzzy sliding mode[J]. Journal of Vibration and Control, 2016, 22(1): 159-175. doi: 10.1177/1077546314526920 [17] MA Y C, JIN S J, GU N N. Decentralised memory static output feedback control for the nonlinear time-delay similar interconnected systems[J]. International Journal of Systems Science, 2016, 47(10): 2487-2498. doi: 10.1080/00207721.2014.999264 [18] 王昊东, 杨臻, 武国梁. 基于ADAMS的卫星对接机构球锁装置动力学分析[J]. 兵器装备工程学报, 2019, 40(10): 45-49. doi: 10.11809/bqzbgcxb2019.10.010WANG H D, YANG Z, WU G L. Dynamic analysis of ball locking device of satellite docking mechanism based on ADAMS[J]. Journal of Ordnance Equipment Engineering, 2019, 40(10): 45-49 (in Chinese). doi: 10.11809/bqzbgcxb2019.10.010 [19] 许军校. 面向空间对接的电磁机构设计与实验研究[D]. 长沙: 国防科学技术大学, 2008: 46-52.XU J X. Design and experimental study of electromagnetic mechanism for space docking[D]. Changsha: National University of Defense Technology, 2008: 46-52 (in Chinese).