留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

升力面法厚度修正及其在折叠翼变体仿真中的应用

徐浩 韩景龙 陈扬 何飞毅 倪昊

徐浩,韩景龙,陈扬,等. 升力面法厚度修正及其在折叠翼变体仿真中的应用[J]. 北京航空航天大学学报,2024,50(12):3806-3814 doi: 10.13700/j.bh.1001-5965.2022.0926
引用本文: 徐浩,韩景龙,陈扬,等. 升力面法厚度修正及其在折叠翼变体仿真中的应用[J]. 北京航空航天大学学报,2024,50(12):3806-3814 doi: 10.13700/j.bh.1001-5965.2022.0926
XU H,HAN J L,CHEN Y,et al. Thickness correction by lifting surface method and its application in morphing simulation of folding wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3806-3814 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0926
Citation: XU H,HAN J L,CHEN Y,et al. Thickness correction by lifting surface method and its application in morphing simulation of folding wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3806-3814 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0926

升力面法厚度修正及其在折叠翼变体仿真中的应用

doi: 10.13700/j.bh.1001-5965.2022.0926
基金项目: 国家自然科学基金(11472133)
详细信息
    通讯作者:

    E-mail:hjlae@nuaa.edu.cn

  • 中图分类号: V212

Thickness correction by lifting surface method and its application in morphing simulation of folding wing

Funds: National Natural Science Foundation of China (11472133)
More Information
  • 摘要:

    变体过程铰链力矩的计算是折叠翼飞行器设计的重要一环,现有仿真在气动建模中多采用传统的升力面法。该方法忽略了翼型厚度的影响,会产生较大的计算误差。引入一种可以考虑翼型厚度的定常高阶面元法,并给出一种采用高阶面元法对升力面法进行厚度修正的气动建模策略。将修正后的气动模型与现有多柔体结构模型及飞行控制模型耦合,对折叠翼的飞行变体过程进行仿真。结果表明:修正后的气动模型可以对翼型厚度进行有效考虑,计算所得铰链力矩误差小于5%。

     

  • 图 1  折叠翼仿真模型

    Figure 1.  Simulation model of folding wing

    图 2  薄机翼绕流问题分解示意图

    Figure 2.  Decomposition of flow around thin wing

    图 3  薄机翼绕流问题的简化

    Figure 3.  Simplification of flow around thin wing

    图 4  0°迎角下对称翼型折叠翼的翼面压力云图

    Figure 4.  Pressure distribution of folding wing with a symmetrical airfoil at an angle of attack of 0°

    图 5  高阶面元法和CFD方法计算的弦向压力系数对比

    Figure 5.  Comparison of chordwise pressure coefficients calculated by high-order panel and CFD methods

    图 6  修正后的耦合仿真平台

    Figure 6.  Modified coupling simulation platform

    图 7  2套气动网格

    Figure 7.  Two sets of aerodynamic models

    图 8  气动建模流程

    Figure 8.  Aerodynamic modeling process

    图 9  折叠翼ADAMS仿真模型

    Figure 9.  ADAMS simulation model of folding wing

    图 10  飞行变体过程动力学响应

    Figure 10.  Dynamic response during flight morphing process

    图 11  不同气动模型仿真结果对比

    Figure 11.  Comparison of simulation results of different aerodynamic models

    图 12  修正气动模型与CFD方法仿真结果对比

    Figure 12.  Comparison of simulation results between modified aerodynamic model and CFD methods

    表  1  展开构型的主要几何参数

    Table  1.   Main geometric parameters of unfolding configuration

    质量m/kg 重心坐标xcg/m 转动惯量Iy/(kg·m2)
    823 (2.45, 0, 0) 5475
    下载: 导出CSV

    表  2  计算时间对比

    Table  2.   Comparison of calculation time

    气动力计算方法 计算耗时/h
    CFD方法(求解Euler方程)[10] 151
    本文修正升力面法 0.6
    下载: 导出CSV
  • [1] LOVE M H, ZINK P S, STROUD R L, et al. Demonstration of morphing technology through ground and wind tunnel tests[C]//Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
    [2] IVANCO T G, SCOTT R C, LOVE M H, et al. Validation of the lockheed martin morphing concept with wind tunnel testing[C]//Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
    [3] RODRIGUEZ A R. Morphing aircraft technology survey[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
    [4] LEE D H, WEISSHAAR T. Aeroelastic studies on a folding wing configuration[C]//Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005.
    [5] REICH G, BOWMAN J, SANDERS B, et al. Development of an integrated aeroelastic multi-body morphing simulation tool[C]// Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006.
    [6] BOWMAN J, REICH G, SANDERS B, et al. Simulation tool for analyzing complex shape-changing mechanisms in aircraft[C]//Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2006.
    [7] SCARLETT J N, CANFIELD R A, SANDERS B. Multibody dynamic aeroelastic simulation of a folding wing aircraft[C]//Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006.
    [8] XU H, HAN J L, YUN H W, et al. Calculation of the hinge moments of a folding wing aircraft during the flight-folding process[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-11.
    [9] KATZ J, PLOTKIN A. Low-speed aerodynamics, second edition[J]. Journal of Fluids Engineering, 2004, 126(2): 293-294. doi: 10.1115/1.1669432
    [10] XU H, HAN J L, XI Y, et al. Comparative study of lifting surface and CFD methods in the simulation of morphing process of folding wing[J]. International Journal of Aerospace Engineering, 2022, 2022: 2476196.
    [11] MURUA J, PALACIOS R, GRAHAM J M R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics[J]. Progress in Aerospace Sciences, 2012, 55: 46-72. doi: 10.1016/j.paerosci.2012.06.001
    [12] CARMICHAEL R L, ERICKSON L L. PAN AIR—A higher order panel method for predicting subsonic or supersonic linear potential flows about arbitrary configurations[C]//Proceedings of the AlAA 14th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1981.
    [13] 赵永辉. 气动弹性力学与控制[M]. 北京: 科学出版社, 2007: 310-319.

    ZHAO Y H. Aeroelasticity and control[M]. Beijing: Science Press, 2007: 310-319(in Chinese).
    [14] HARDER R L, DESMARAIS R N. Interpolation using surface splines[J]. Journal of Aircraft, 1972, 9(2): 189-191. doi: 10.2514/3.44330
    [15] 李增刚. ADAMS入门详解与实例[M]. 2版. 北京: 国防工业出版社, 2014: 127-135.

    LI Z G. Detailed introduction and examples of ADAMS[M]. 2nd ed. Beijing: National Defense Industry Press, 2014: 127-135(in Chinese).
    [16] 纪玉杰, 杨强, 孙志礼, 等. 应用C语言编写ADAMS用户自定义函数的研究[J]. 机械设计与制造, 2006(1): 101-103. doi: 10.3969/j.issn.1001-3997.2006.01.046

    JI Y J, YANG Q, SUN Z L, et al. The research on writing user-written subroutine of ADAMS in C programming language[J]. Machinery Design & Manufacture, 2006(1): 101-103 (in Chinese). doi: 10.3969/j.issn.1001-3997.2006.01.046
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  57
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 录用日期:  2023-02-24
  • 网络出版日期:  2023-05-05
  • 整期出版日期:  2024-12-31

目录

    /

    返回文章
    返回
    常见问答