-
摘要:
针对卫星通信面临的不同类型的干扰,以频移键控(FSK)调制通信信号为研究对象,重点对单音、多音、窄带、多音窄带、噪声调幅、噪声调频、噪声调相、线性调频、脉冲干扰9种干扰对抗条件下的误码率与信干比之间的关系进行研究。通过仿真提供了不同频偏、不同信干比情况下,不同干扰样式对FSK调制传输系统的恶化程度,并得出最佳干扰样式,同时给出了不同频偏、不同干扰样式情况下实现通信阻断(误码率大于10−2)需要的最高信干比。当信干比小于0 dB时,单音干扰和噪声调频干扰对系统恶化程度更严重;当信干比大于0 dB时,噪声调频干扰、多音窄带干扰和脉冲干扰具有更好的干扰效果。在不同频偏情况下实现通信阻断,脉冲干扰付出的功率代价最小。
Abstract:In view of the different types of jamming faced by satellite communication, frequency-shift keying (FSK) modulated communication signal was taken as the research object, and the relationship between the bit error rate and the signal-to-jamming ratio was mainly studied under the nine countermeasure conditions of jamming, such as single-tone, multi-tone, narrowband, multi-tone narrowband, noise amplitude modulation, noise frequency modulation, noise phase modulation, linear frequency modulation jamming, and pulse jamming. The deterioration degree of the FSK modulated communication system with different types of jamming in the case of different frequency biases and signal-to-jamming ratios was obtained through simulation, and the optimal jamming type was obtained. At the same time, the maximum signal-to-jamming ratio required to block communication (with a bit error rate greater than 10−2) under different frequency biases and different types of jamming was obtained. When the signal-to-jamming ratio was less than 0 dB, the single-tone jamming and noise frequency modulation jamming caused more serious system deterioration. When the signal-to-jamming ratio was greater than 0 dB, the noise frequency modulation jamming, the multi-tone narrowband jamming, and the pulse jamming exhibited better jamming effect. In the case of different frequency biases, the pulse jamming required the minimum power to block communication.
-
表 1 不同频偏、不同信干比下的干扰样式优选方案
Table 1. Optimal jamming type selection scheme under different frequency biases and signal-to-jamming ratios
频偏/% 信干比/dB <−10 −10~−5 −5~0 0~5 >5 0 单音 单音 单音 噪声
调频脉冲 <5 单音 单音 单音 噪声
调频脉冲 5~15 单音 单音 噪声
调频多音
窄带脉冲 5、12.5
(双载波)噪声
调频噪声
调频噪声
调频噪声
调频/脉冲多音
窄带/脉冲表 2 不同干扰样式在不同频偏下实现通信阻断的临界信干比
Table 2. Critical signal-to-jamming ratio required to block communication with different frequency biases and jamming types
干扰样式 临界信干比/dB 频偏为0 频偏<5% 频偏为
5%~15%频偏为5%、12.5%
(双载波)单音 2.5 1.5 0.2 2.5 多音 2.2 2.2 2 4 窄带 8 6 5 6 多音窄带 7 6.5 6 6.5 噪声调频 斜率大 4.2 4.8 3.5 6.5 斜率小 6 5.5 1.8 6.5 脉冲 带宽小 10 7.5 6 8 带宽大 4 1.5 1 2 线性调频 3 1.5 0.5 3 噪声调幅 2.5 1.5 0.2 2.5 噪声调相 2.5 1.5 0.2 2.5 -
[1] 张洪太, 王敏, 崔万照, 等. 卫星通信技术[M]. 北京: 北京理工大学出版社, 2018: 2-5.ZHANG H T, WANG M, CUI W Z. Satellite communication[M]. Beijing: Beijing Insititute of Technology Press, 2018: 2-5(in Chinese). [2] 李献斌, 王建, 范广腾, 等. 北斗导航星座星间通信速率控制方法[J]. 北京航空航天大学学报, 2020, 46(4): 731-738.LI X B, WANG J, FAN G T, et al. Inter-satellite communication rate control method of BeiDou navigation constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 731-738(in Chinese). [3] 郝东方. 卫星通信干扰技术的研究[D]. 西安: 西安电子科技大学, 2012: 13-29.HAO D F. Research on satellite communication jamming technology[D]. Xi’an: Xidian University, 2012: 13-29(in Chinese). [4] 蒋春茂, 徐慨. 卫星通信系统的干扰效能分析[J]. 舰船电子工程, 2020, 40(5): 130-133. doi: 10.3969/j.issn.1672-9730.2020.05.031JIANG C M, XU K. Analysis of jamming efficiency of satellite communication system[J]. Ship Electronic Engineering, 2020, 40(5): 130-133 (in Chinese). doi: 10.3969/j.issn.1672-9730.2020.05.031 [5] 魏玉清, 冀云成, 吴涛. 国外星-地通信干扰技术发展现状及趋势研究[J]. 中国集成电路, 2020, 29(S3): 27-31.WEI Y Q, JI Y C, WU T. Research on the development status and trend of satellite-to-ground communication jamming technology abroad[J]. China Integrated Circuit, 2020, 29(S3): 27-31(in Chinese). [6] 李荃, 黄越星, 吴翔, 等. 卫星通信链路干扰研究[C]//第十七届卫星通信学术年会论文集. 北京: 中国通信学会, 2021: 102-106.LI Q, HUANG Y X, WU X, et al. Study on simulation of the satellite communication links interference[C]//Proceedings of the 17th Annual Conference on Satellite Communications. Beijing: China Institute of Communications, 2021: 102-106(in Chinese). [7] LENG X, XIAO B, ZHANG Y N. Visual modeling and analysis of jamming effect of electronic countermeasures equipment based on STK[C]//Proceedings of the 2nd International Symposium on Mechanical Systems and Electronic Engineering. Piscataway: IEEE Press, 2022: 1-6. [8] HE D C. Exploring the common interference of satellite communication and its countermeasures[J]. Changjiang Information & Communications, 2021, 34(8): 116-118. [9] 董苏惠, 姚秀娟, 高翔, 等. GSO卫星系统布设中的通信干扰评估方法[J]. 北京航空航天大学学报, 2020, 46(11): 2184-2194.DONG S H, YAO X J, GAO X, et al. Communication interference assessment methods in GSO satellite system deployment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2184-2194(in Chinese). [10] LICHTMAN M, REED J H. Analysis of reactive jamming against satellite communications[J]. International Journal of Satellite Communications and Networking, 2016, 34(2): 195-210. doi: 10.1002/sat.1111 [11] PANAGOPOULOS A D, KRITIKOS T D, LIVIERATOS S N, et al. Interference studies between adjacent satellite communications systems operating above 10 GHz and using power control as fade mitigation technique[J]. Wireless Personal Communications, 2014, 77(2): 1311-1327. doi: 10.1007/s11277-013-1582-1 [12] 徐可笛, 徐兆斌, 郭晓旭, 等. 大规模卫星星座组网的码分多址干扰分析[J]. 北京航空航天大学学报, 2024, 50(9): 2885-2892.XU K D, XU Z B, GUO X X, et al. Analysis of CDMA interference in large-scale satellite constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(9): 2885-2892(in Chinese). [13] 逄天洋, 李永贵, 牛英滔, 等. 通信电子干扰的分类与发展[J]. 通信技术, 2018, 51(10): 2271-2278. doi: 10.3969/j.issn.1002-0802.2018.10.001PANG T Y, LI Y G, NIU Y T, et al. Classification and development of communication electronic jamming[J]. Communications Technology, 2018, 51(10): 2271-2278(in Chinese). doi: 10.3969/j.issn.1002-0802.2018.10.001 [14] HAMDI K A, PAP L. A unified framework for interference analysis of noncoherent MFSK wireless communications[J]. IEEE Transactions on Communications, 2010, 58(8): 2333-2344. doi: 10.1109/TCOMM.2010.08.080391 [15] 郑文秀, 赵国庆, 张煜. 随机跳频噪声对FSK信号的干扰分析[J]. 电子信息对抗技术, 2007, 22(6): 33-38. doi: 10.3969/j.issn.1674-2230.2007.06.009ZHENG W X, ZHAO G Q, ZHANG Y. Jamming analysis of random frequency-hopping noise on FSK signal[J]. Electronic Information Warfare Technology, 2007, 22(6): 33-38(in Chinese). doi: 10.3969/j.issn.1674-2230.2007.06.009 [16] 郑文秀, 张晓燕. 梳状谱射频噪声对相干接收FSK信号的干扰分析[J]. 电子信息对抗技术, 2010, 25(4): 21-25. doi: 10.3969/j.issn.1674-2230.2010.04.007ZHENG W X, ZHANG X Y. Jamming analysis of RF noise with the pectinate spectrum on the coherent received FSK signal[J]. Electronic Information Warfare Technology, 2010, 25(4): 21-25(in Chinese). doi: 10.3969/j.issn.1674-2230.2010.04.007 [17] 高君丰, 高鑫伟. 音频干扰对FSK调制系统的对抗效果研究[J]. 舰船电子对抗, 2013, 36(4): 84-87. doi: 10.3969/j.issn.1673-9167.2013.04.022GAO J F, GAO X W. Research into the countermeasure effect of audio jamming to FSK modulation system[J]. Shipboard Electronic Countermeasure, 2013, 36(4): 84-87(in Chinese). doi: 10.3969/j.issn.1673-9167.2013.04.022 [18] 彭勃, 曹健辉. 对FSK信号最佳干扰效果及效能研究[J]. 通信技术, 2013, 46(7): 10-13. doi: 10.3969/j.issn.1002-0802.2013.07.004PENG B, CAO J H. Optimal jamming effect and efficiency of FSK[J]. Communications Technology, 2013, 46(7): 10-13(in Chinese). doi: 10.3969/j.issn.1002-0802.2013.07.004 [19] 杨旭宁, 陆锐敏, 张煜锋. 转发式干扰条件下FFH/2FSK通信链路性能分析[J]. 空军预警学院学报, 2021, 35(4): 258-262.YANG X N, LU R M, ZHANG Y F. Performance analysis of FFH/2FSK communication link with repeater jamming[J]. Journal of Air Force Early Warning Academy, 2021, 35(4): 258-262(in Chinese). [20] FAN X F, TAN Z L, SONG P J. Bit error rate analysis for FH/MFSK system with follower jamming[J]. Mathematical Problems in Engineering, 2020, 2020: 8975421. [21] HE Y S, CHENG Y F, WU G, et al. Performance analysis of coherently detected FFH/BPSK with maximal ratio combining receiver over Rayleigh fading channel with multitone jamming and imperfect channel estimation[C]//Proceedings of the International Conference on Computing, Networking and Communications. Piscataway: IEEE Press, 2014: 669-673. [22] 樊昌信, 曹丽娜. 通信原理[M]. 7版. 北京: 国防工业出版社, 2012: 160-212.FAN C X, CAO L N. Communication principle[M]. 7th ed. Beijing: National Defense Industry Press, 2012: 160-212(in Chinese). [23] 邓兵, 张韫, 李炳荣. 通信对抗原理及应用[M]. 北京: 电子工业出版社, 2017: 183-188.DENG B, ZHANG Y, LI B R. Principles and applications of communications countermeasures[M]. Beijing: Publishing House of Electronics Industry, 2017: 183-188(in Chinese). -