留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FSK调制系统的干扰对抗效果

马雅楠 王建 范广腾 曹璐

马雅楠,王建,范广腾,等. FSK调制系统的干扰对抗效果[J]. 北京航空航天大学学报,2025,51(2):507-517 doi: 10.13700/j.bh.1001-5965.2023.0007
引用本文: 马雅楠,王建,范广腾,等. FSK调制系统的干扰对抗效果[J]. 北京航空航天大学学报,2025,51(2):507-517 doi: 10.13700/j.bh.1001-5965.2023.0007
MA Y N,WANG J,FAN G T,et al. Countermeasure effect of jamming to FSK modulation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):507-517 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0007
Citation: MA Y N,WANG J,FAN G T,et al. Countermeasure effect of jamming to FSK modulation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):507-517 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0007

FSK调制系统的干扰对抗效果

doi: 10.13700/j.bh.1001-5965.2023.0007
基金项目: 国家自然科学基金(62301590,61801503)
详细信息
    通讯作者:

    E-mail:wangjian710108@126.com

  • 中图分类号: V443.1;TN975

Countermeasure effect of jamming to FSK modulation system

Funds: National Natural Science Foundation of China (62301590,61801503)
More Information
  • 摘要:

    针对卫星通信面临的不同类型的干扰,以频移键控(FSK)调制通信信号为研究对象,重点对单音、多音、窄带、多音窄带、噪声调幅、噪声调频、噪声调相、线性调频、脉冲干扰9种干扰对抗条件下的误码率与信干比之间的关系进行研究。通过仿真提供了不同频偏、不同信干比情况下,不同干扰样式对FSK调制传输系统的恶化程度,并得出最佳干扰样式,同时给出了不同频偏、不同干扰样式情况下实现通信阻断(误码率大于10−2)需要的最高信干比。当信干比小于0 dB时,单音干扰和噪声调频干扰对系统恶化程度更严重;当信干比大于0 dB时,噪声调频干扰、多音窄带干扰和脉冲干扰具有更好的干扰效果。在不同频偏情况下实现通信阻断,脉冲干扰付出的功率代价最小。

     

  • 图 1  2FSK信号时域波形

    Figure 1.  Time-domain waveform of 2FSK signal

    图 2  2FSK信号频域波形

    Figure 2.  Frequency-domain waveform of 2FSK signal

    图 3  信号传输和接收机解调框[18,22]

    Figure 3.  Block of signal transmission and receiver demodulation[18,22]

    图 4  单音干扰信号的时域波形和功率谱

    Figure 4.  Time-domain waveform and power spectrum of single-tone jamming signal

    图 5  多音干扰信号的时域波形和功率谱

    Figure 5.  Time-domain waveform and power spectrum of multi-tone jamming signal

    图 6  窄带干扰信号的时域波形和功率谱

    Figure 6.  Time-domain waveform and power spectrum of narrowband jamming signal

    图 7  多音窄带干扰信号的时域波形和功率谱

    Figure 7.  Time-domain waveform and power spectrum of multi-tone narrowband jamming signal

    图 8  噪声调频干扰信号的时域波形和功率谱

    Figure 8.  Time-domain waveform and power spectrum of noise frequency modulation jamming signal

    图 9  脉冲干扰信号的时域波形和功率谱

    Figure 9.  Time-domain waveform and power spectrum of pulse jamming signal

    图 10  线性调频干扰信号的时域波形和功率谱

    Figure 10.  Time-domain waveform and power spectrum of linear frequency modulation jamming signal

    图 11  噪声调幅干扰信号的时域波形和功率谱

    Figure 11.  Time-domain waveform and power spectrum of noise amplitude modulation jamming signal

    图 12  噪声调相干扰信号的时域波形和功率谱

    Figure 12.  Time-domain waveform and power spectrum of noise phase modulation jamming signal

    图 13  无频偏情况下FSK信号误码率随信干比的变化曲线

    Figure 13.  Change of bit error rate of FSK signal with signal-to-jamming ratio without frequency bias

    图 14  单音、多音、噪声调幅、噪声调相干扰情况下FSK信号误码率随信干比的变化曲线

    Figure 14.  Change of bit error rate of FSK signal with signal-to-jamming ratio under single-tone, multi-tone, noise amplitude modulation, and noise phase modulation jamming

    图 15  窄带、宽带、线性调频干扰情况下FSK信号误码率随信干比的变化曲线

    Figure 15.  Change of bit error rate of FSK signal with signal-to-jamming ratio under narrowband, wideband, and linear frequency modulation jamming

    图 16  多音、窄带、宽带、多音窄带干扰情况下FSK信号误码率随信干比的变化曲线

    Figure 16.  Change of bit error rate of FSK signal with signal-to-jamming ratio under multi-tone, narrowband, and multi-tone narrowband jamming

    图 17  多音窄带、噪声调频、脉冲干扰情况下FSK信号 误码率随信干比的变化曲线

    Figure 17.  Change of bit error rate of FSK signal with signal-to-jamming ratio under multi-tone narrowband, noise frequency modulation, and pulse jamming

    表  1  不同频偏、不同信干比下的干扰样式优选方案

    Table  1.   Optimal jamming type selection scheme under different frequency biases and signal-to-jamming ratios

    频偏/% 信干比/dB
    <−10 −10~−5 −5~0 0~5 >5
    0 单音 单音 单音 噪声
    调频
    脉冲
    <5 单音 单音 单音 噪声
    调频
    脉冲
    5~15 单音 单音 噪声
    调频
    多音
    窄带
    脉冲
    5、12.5
    (双载波)
    噪声
    调频
    噪声
    调频
    噪声
    调频
    噪声
    调频/脉冲
    多音
    窄带/脉冲
    下载: 导出CSV

    表  2  不同干扰样式在不同频偏下实现通信阻断的临界信干比

    Table  2.   Critical signal-to-jamming ratio required to block communication with different frequency biases and jamming types

    干扰样式 临界信干比/dB
    频偏为0 频偏<5% 频偏为
    5%~15%
    频偏为5%、12.5%
    (双载波)
    单音 2.5 1.5 0.2 2.5
    多音 2.2 2.2 2 4
    窄带 8 6 5 6
    多音窄带 7 6.5 6 6.5
    噪声调频 斜率大 4.2 4.8 3.5 6.5
    斜率小 6 5.5 1.8 6.5
    脉冲 带宽小 10 7.5 6 8
    带宽大 4 1.5 1 2
    线性调频 3 1.5 0.5 3
    噪声调幅 2.5 1.5 0.2 2.5
    噪声调相 2.5 1.5 0.2 2.5
    下载: 导出CSV
  • [1] 张洪太, 王敏, 崔万照, 等. 卫星通信技术[M]. 北京: 北京理工大学出版社, 2018: 2-5.

    ZHANG H T, WANG M, CUI W Z. Satellite communication[M]. Beijing: Beijing Insititute of Technology Press, 2018: 2-5(in Chinese).
    [2] 李献斌, 王建, 范广腾, 等. 北斗导航星座星间通信速率控制方法[J]. 北京航空航天大学学报, 2020, 46(4): 731-738.

    LI X B, WANG J, FAN G T, et al. Inter-satellite communication rate control method of BeiDou navigation constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 731-738(in Chinese).
    [3] 郝东方. 卫星通信干扰技术的研究[D]. 西安: 西安电子科技大学, 2012: 13-29.

    HAO D F. Research on satellite communication jamming technology[D]. Xi’an: Xidian University, 2012: 13-29(in Chinese).
    [4] 蒋春茂, 徐慨. 卫星通信系统的干扰效能分析[J]. 舰船电子工程, 2020, 40(5): 130-133. doi: 10.3969/j.issn.1672-9730.2020.05.031

    JIANG C M, XU K. Analysis of jamming efficiency of satellite communication system[J]. Ship Electronic Engineering, 2020, 40(5): 130-133 (in Chinese). doi: 10.3969/j.issn.1672-9730.2020.05.031
    [5] 魏玉清, 冀云成, 吴涛. 国外星-地通信干扰技术发展现状及趋势研究[J]. 中国集成电路, 2020, 29(S3): 27-31.

    WEI Y Q, JI Y C, WU T. Research on the development status and trend of satellite-to-ground communication jamming technology abroad[J]. China Integrated Circuit, 2020, 29(S3): 27-31(in Chinese).
    [6] 李荃, 黄越星, 吴翔, 等. 卫星通信链路干扰研究[C]//第十七届卫星通信学术年会论文集. 北京: 中国通信学会, 2021: 102-106.

    LI Q, HUANG Y X, WU X, et al. Study on simulation of the satellite communication links interference[C]//Proceedings of the 17th Annual Conference on Satellite Communications. Beijing: China Institute of Communications, 2021: 102-106(in Chinese).
    [7] LENG X, XIAO B, ZHANG Y N. Visual modeling and analysis of jamming effect of electronic countermeasures equipment based on STK[C]//Proceedings of the 2nd International Symposium on Mechanical Systems and Electronic Engineering. Piscataway: IEEE Press, 2022: 1-6.
    [8] HE D C. Exploring the common interference of satellite communication and its countermeasures[J]. Changjiang Information & Communications, 2021, 34(8): 116-118.
    [9] 董苏惠, 姚秀娟, 高翔, 等. GSO卫星系统布设中的通信干扰评估方法[J]. 北京航空航天大学学报, 2020, 46(11): 2184-2194.

    DONG S H, YAO X J, GAO X, et al. Communication interference assessment methods in GSO satellite system deployment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2184-2194(in Chinese).
    [10] LICHTMAN M, REED J H. Analysis of reactive jamming against satellite communications[J]. International Journal of Satellite Communications and Networking, 2016, 34(2): 195-210. doi: 10.1002/sat.1111
    [11] PANAGOPOULOS A D, KRITIKOS T D, LIVIERATOS S N, et al. Interference studies between adjacent satellite communications systems operating above 10 GHz and using power control as fade mitigation technique[J]. Wireless Personal Communications, 2014, 77(2): 1311-1327. doi: 10.1007/s11277-013-1582-1
    [12] 徐可笛, 徐兆斌, 郭晓旭, 等. 大规模卫星星座组网的码分多址干扰分析[J]. 北京航空航天大学学报, 2024, 50(9): 2885-2892.

    XU K D, XU Z B, GUO X X, et al. Analysis of CDMA interference in large-scale satellite constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(9): 2885-2892(in Chinese).
    [13] 逄天洋, 李永贵, 牛英滔, 等. 通信电子干扰的分类与发展[J]. 通信技术, 2018, 51(10): 2271-2278. doi: 10.3969/j.issn.1002-0802.2018.10.001

    PANG T Y, LI Y G, NIU Y T, et al. Classification and development of communication electronic jamming[J]. Communications Technology, 2018, 51(10): 2271-2278(in Chinese). doi: 10.3969/j.issn.1002-0802.2018.10.001
    [14] HAMDI K A, PAP L. A unified framework for interference analysis of noncoherent MFSK wireless communications[J]. IEEE Transactions on Communications, 2010, 58(8): 2333-2344. doi: 10.1109/TCOMM.2010.08.080391
    [15] 郑文秀, 赵国庆, 张煜. 随机跳频噪声对FSK信号的干扰分析[J]. 电子信息对抗技术, 2007, 22(6): 33-38. doi: 10.3969/j.issn.1674-2230.2007.06.009

    ZHENG W X, ZHAO G Q, ZHANG Y. Jamming analysis of random frequency-hopping noise on FSK signal[J]. Electronic Information Warfare Technology, 2007, 22(6): 33-38(in Chinese). doi: 10.3969/j.issn.1674-2230.2007.06.009
    [16] 郑文秀, 张晓燕. 梳状谱射频噪声对相干接收FSK信号的干扰分析[J]. 电子信息对抗技术, 2010, 25(4): 21-25. doi: 10.3969/j.issn.1674-2230.2010.04.007

    ZHENG W X, ZHANG X Y. Jamming analysis of RF noise with the pectinate spectrum on the coherent received FSK signal[J]. Electronic Information Warfare Technology, 2010, 25(4): 21-25(in Chinese). doi: 10.3969/j.issn.1674-2230.2010.04.007
    [17] 高君丰, 高鑫伟. 音频干扰对FSK调制系统的对抗效果研究[J]. 舰船电子对抗, 2013, 36(4): 84-87. doi: 10.3969/j.issn.1673-9167.2013.04.022

    GAO J F, GAO X W. Research into the countermeasure effect of audio jamming to FSK modulation system[J]. Shipboard Electronic Countermeasure, 2013, 36(4): 84-87(in Chinese). doi: 10.3969/j.issn.1673-9167.2013.04.022
    [18] 彭勃, 曹健辉. 对FSK信号最佳干扰效果及效能研究[J]. 通信技术, 2013, 46(7): 10-13. doi: 10.3969/j.issn.1002-0802.2013.07.004

    PENG B, CAO J H. Optimal jamming effect and efficiency of FSK[J]. Communications Technology, 2013, 46(7): 10-13(in Chinese). doi: 10.3969/j.issn.1002-0802.2013.07.004
    [19] 杨旭宁, 陆锐敏, 张煜锋. 转发式干扰条件下FFH/2FSK通信链路性能分析[J]. 空军预警学院学报, 2021, 35(4): 258-262.

    YANG X N, LU R M, ZHANG Y F. Performance analysis of FFH/2FSK communication link with repeater jamming[J]. Journal of Air Force Early Warning Academy, 2021, 35(4): 258-262(in Chinese).
    [20] FAN X F, TAN Z L, SONG P J. Bit error rate analysis for FH/MFSK system with follower jamming[J]. Mathematical Problems in Engineering, 2020, 2020: 8975421.
    [21] HE Y S, CHENG Y F, WU G, et al. Performance analysis of coherently detected FFH/BPSK with maximal ratio combining receiver over Rayleigh fading channel with multitone jamming and imperfect channel estimation[C]//Proceedings of the International Conference on Computing, Networking and Communications. Piscataway: IEEE Press, 2014: 669-673.
    [22] 樊昌信, 曹丽娜. 通信原理[M]. 7版. 北京: 国防工业出版社, 2012: 160-212.

    FAN C X, CAO L N. Communication principle[M]. 7th ed. Beijing: National Defense Industry Press, 2012: 160-212(in Chinese).
    [23] 邓兵, 张韫, 李炳荣. 通信对抗原理及应用[M]. 北京: 电子工业出版社, 2017: 183-188.

    DENG B, ZHANG Y, LI B R. Principles and applications of communications countermeasures[M]. Beijing: Publishing House of Electronics Industry, 2017: 183-188(in Chinese).
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  91
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 录用日期:  2023-03-10
  • 网络出版日期:  2023-05-06
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答