留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

翼身融合布局平面参数对变弯度减阻特性分析

王雨桐 刘悦 王浩 杨体浩 刘红阳 周铸

王雨桐,刘悦,王浩,等. 翼身融合布局平面参数对变弯度减阻特性分析[J]. 北京航空航天大学学报,2025,51(2):525-545 doi: 10.13700/j.bh.1001-5965.2023.0011
引用本文: 王雨桐,刘悦,王浩,等. 翼身融合布局平面参数对变弯度减阻特性分析[J]. 北京航空航天大学学报,2025,51(2):525-545 doi: 10.13700/j.bh.1001-5965.2023.0011
WANG Y T,LIU Y,WANG H,et al. Drag reduction characteristics analysis of variable camber based on plane parameters of blended wing body configuration[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):525-545 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0011
Citation: WANG Y T,LIU Y,WANG H,et al. Drag reduction characteristics analysis of variable camber based on plane parameters of blended wing body configuration[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):525-545 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0011

翼身融合布局平面参数对变弯度减阻特性分析

doi: 10.13700/j.bh.1001-5965.2023.0011
详细信息
    通讯作者:

    E-mail:f_yforever@126.com

  • 中图分类号: V221.41

Drag reduction characteristics analysis of variable camber based on plane parameters of blended wing body configuration

More Information
  • 摘要:

    变弯度技术能提升飞行器气动性能,与翼身融合(BWB)布局相结合可进一步增强其气动优势。但无尾 BWB 仅靠后缘舵面配平,纵向力臂短,配平阻力惩罚大,因此进行BWB后缘变弯度设计时需充分考虑配平阻力损失。针对无尾 BWB,考虑平面参数对后缘舵面配平能力的影响,基于全局优化方法研究了不同机翼后掠角和机翼位置的BWB构型上后缘变弯度技术的减阻原理和作用效果。结果表明:在不同升力系数下,配平阻力损失都显著减小变弯度技术的减阻收益。BWB 平面参数通过影响激波强度与配平能力,左右变弯度技术的减阻收益并影响舵面偏转角度。相比于基准构型,增大后掠角会使得小升力系数下减阻收益增加、大升力系数下降低;而机翼位置靠前,则会使得不考虑力矩配平时减阻收益增加、考虑力矩配平时阻收益降低。工程上进行无尾飞行器后缘变弯度设计时,应综合考虑后缘变弯度的减阻收益以及变形所需的舵面偏转角度。

     

  • 图 1  ONERA-M6机翼网格示意图

    Figure 1.  Schematic diagram of the ONERA-M6 wing grid

    图 2  ONERA-M6机翼计算结果与实验数据对比

    Figure 2.  Comparison of ONERA-M6 wing calculation results with experimental data

    图 3  优化设计系统流程

    Figure 3.  Flowchart of optimal design system

    图 4  舵面划分及剖面布置示意图

    Figure 4.  Schematic diagram of division and cross-section layout of flap surface

    图 5  不同构型的平面形状对比

    Figure 5.  Comparison of planar shapes of different configurations

    图 6  CL=0.19时3个构型表面压力云图

    Figure 6.  Surface pressure contours of three configurations (CL=0.19)

    图 7  CL=0.19时3个构型不同展向位置压力剖面对比

    Figure 7.  Comparison of pressure prafiles at different spanwise positions of three configurations (CL=0.19)

    图 8  CL=0.14时3个构型表面压力云图

    Figure 8.  Surface pressure contours of three configurations (CL=0.14)

    图 9  CL=0.14时3个构型不同展向位置压力剖面对比

    Figure 9.  Comparison of pressure prafiles at different spanwise positions of three configurations (CL=0.14)

    图 10  CL=0.24时3个构型表面压力云图

    Figure 10.  Surface pressure contours of three configurations (CL=0.24)

    图 11  CL=0.24时3个构型不同展向位置压力剖面对比

    Figure 11.  Comparison of pressure prafiles at different spanwise positions of three configurations (CL=0.24)

    图 12  不同升力系数的环量对比

    Figure 12.  Comparison of circulation with different lift coefficients

    图 13  各舵面单独偏转时阻力与俯仰力矩变化曲线

    Figure 13.  Variation of drag and pitching moment of each flap surface with single deflection

    图 14  3个构型各舵面距离重心的力臂对比

    Figure 14.  Comparison of lever arm of each flap surface from center of gravity of three configurations

    图 15  基准构型变弯度前后对比(CL=0.14)

    Figure 15.  Comparison of variable camber of baseline configuration before and after optimization (CL= 0.14)

    图 16  变后掠构型变弯度前后对比(CL=0.14)

    Figure 16.  Comparison of variable camber of variable sweepback angle configuration before and after optimization (CL= 0.14)

    图 17  机翼前移构型变弯度前后对比(CL=0.14)

    Figure 17.  Comparison of variable camber of forward wing configuration before and after optimization (CL= 0.14)

    图 18  3种构型的环量对比(CL=14)

    Figure 18.  Comparison of ringvolumes for the three configurations (CL=14)

    图 19  基准构型变弯度前后对比(CL=0.24)

    Figure 19.  Comparison of variable camber of baseline configuration before and after optimization (CL= 0.24)

    图 20  变后掠构型变弯度前后对比(CL=0.24)

    Figure 20.  Comparison of variable camber of variable sweepback angle configuration before and after optimization (CL= 0.24)

    图 21  机翼前移构型变弯度前后对比(CL=0.24)

    Figure 21.  Comparison of variable camber of forward wing configuration before and after optimization (CL= 0.24)

    图 22  3种构型的环量对比(CL=24)

    Figure 22.  Comparison of ringvolumes for the three configurations (CL=24)

    图 23  变弯度减阻收益对比

    Figure 23.  Comparison of drag reduction benefits of variable camber

    图 24  变弯度舵面偏转对比

    Figure 24.  Comparison of flap surface deflection of variable camber

    表  1  基准构型几何参数

    Table  1.   Geometric parameters of baseline configuration

    参数 数值
    展长/m 65.5
    机身长/m 41
    参考面积/m2 840
    前缘后掠角/(°) 28
    力矩参考点/m 24.2
    静稳态裕度/% 7.83
    下载: 导出CSV

    表  2  巡航状态3个构型的气动力系数

    Table  2.   Aerodynamic coefficients of three configurations in cruising state

    构型 α/(°) CL CD CM L/D
    基准构型2.580.140.007 950.004 017.62
    3.120.190.009 040.000 021.00
    3.630.240.011 48−0.004 920.91
    变后掠构型2.780.140.007 610.004 418.39
    3.400.190.008 980.000 521.16
    3.990.240.010 86−0.003 622.17
    机翼前移构型2.450.140.007 800.004 217.94
    2.960.190.009 050.000 320.98
    3.500.240.011 77−0.004 120.39
    下载: 导出CSV

    表  3  变后掠构型变弯度优化结果(CL=0.19)

    Table  3.   Variable camber optimization results of variable sweepback angle configuration (CL= 0.19)

    构型 偏转角度/(°) α/(°) CD CM ΔCD
    舵0 舵1 舵2 舵3 舵4 舵5
    不变弯度构型 0 0 0 0 0 0 3.40 0.00898 0.0005
    变弯度构型 0.70 1.28 0.70 2.32 2.97 2.15 2.80 0.00882 0.0005 −0.8×10−4
    变弯度配平构型 −0.38 −0.46 −0.41 0.42 0.90 0.46 3.42 0.00894 0 −0.4×10−4
    舵0配平构型 0.63 0 0 0 0 0 3.38 0.00898 0 0
    下载: 导出CSV

    表  4  机翼前移构型变弯度优化结果(CL=0.19)

    Table  4.   Variable camber optimization results of forward wing configuration (CL= 0.19)

    构型 偏转角度/(°) α/(°) CD CM ΔCD
    舵0 舵1 舵2 舵3 舵4 舵5
    不变弯度构型 0 0 0 0 0 0 2.96 0.00905 0.0003
    变弯度构型 0.96 0.48 −0.20 0.02 1.33 1.68 2.81 0.00895 0.0036 −1.0×10−4
    变弯度配平构型 0.29 1.09 −0.09 −1.43 0.86 0.84 2.97 0.00903 0 −0.2×10−4
    舵0配平构型 0.42 0 0 0 0 0 2.95 0.00905 0 0
    下载: 导出CSV

    表  5  基准构型变弯度优化结果(CL=0.14)

    Table  5.   Variable camber optimization results of baseline configuration (CL= 0.14)

    构型 偏转角度/(°) α/(°) CD CM ΔCD
    舵0 舵1 舵2 舵3 舵4 舵5
    不变弯度构型 0 0 0 0 0 0 2.58 0.00795 0.0040
    变弯度构型 −0.21 0.02 −1.11 −1.28 1.31 0.09 2.80 0.00787 0.0072 −0.8×10−4
    变弯度配平构型 0.68 1.75 −0.50 −0.09 0.42 1.65 2.45 0.00792 0.0004 −0.3×10−4
    舵0配平构型 4.91 0 0 0 0 0 2.41 0.00817 0.0003 +2.2×10−4
    下载: 导出CSV

    表  6  变后掠构型变弯度优化结果(CL=0.14)

    Table  6.   Variable camber optimization results of variable sweepback angle configuration (CL= 0.14)

    构型 偏转角度/(°) α/(°) CD CM ΔCD
    舵0 舵1 舵2 舵3 舵4 舵5
    不变弯度构型 0 0 0 0 0 0 2.78 0.00761 0.0044
    变弯度构型 0.76 1.09 0.76 2.01 2.58 1.96 2.22 0.00748 0.0072 −1.3×10−4
    变弯度配平构型 −0.84 1.34 −0.40 0.44 2.57 0.56 2.61 0.00755 0 −0.6×10−4
    舵0配平构型 6.14 0 0 0 0 0 2.58 0.00796 0 +3.5×10−4
    下载: 导出CSV

    表  7  机翼前移构型变弯度优化结果(CL=0.14)

    Table  7.   Variable camber optimization results of forward wing configuration (CL= 0.14)

    构型 偏转角度/(°) α/(°) CD CM ΔCD
    舵0 舵1 舵2 舵3 舵4 舵5
    不变弯度构型 0 0 0 0 0 0 2.45 0.00780 0.0042
    变弯度构型 −0.09 −0.48 −1.54 −0.91 0.61 1.46 2.67 0.00767 0.0076 −1.3×10−4
    变弯度配平构型 1.71 1.12 0.98 −2.36 1.28 2.22 2.31 0.00791 0 +1.1×10−4
    舵0配平构型 4.9 0 0 0 0 0 2.32 0.00802 0 +2.2×10−4
    下载: 导出CSV

    表  8  基准构型变弯度优化结果(CL=0.24)

    Table  8.   Variable camber optimization results of baseline configuration (CL= 0.24)

    构型 偏转角度/(°) α/(°) CD CM ΔCD
    舵0 舵1 舵2 舵3 舵4 舵5
    不变弯度构型 0 0 0 0 0 0 3.63 0.01148 0.0049
    变弯度构型 1.46 2.65 0.09 0.74 0.89 2.25 3.22 0.01095 0.0157 −5.3×10−4
    变弯度配平构型 −1.18 −2.47 0.50 −0.42 −0.53 −0.17 3.83 0.01199 0.0003 +5.1×10−4
    舵0配平构型 −5.89 0 0 0 0 0 3.82 0.01228 0.0001 +8×10−4
    下载: 导出CSV

    表  9  变后掠构型变弯度优化结果(CL=0.24)

    Table  9.   Variable camber optimization results of variable sweepback angle configuration (CL= 0.24)

    构型 偏转角度/(°) α/(°) CD CM ΔCD
    舵0 舵1 舵2 舵3 舵4 舵5
    不变弯度构型 0 0 0 0 0 0 3.99 0.01086 0.0036
    变弯度构型 0.49 1.10 0.69 2.05 3.21 1.85 3.46 0.01050 0.0154 −3.6×10−4
    变弯度配平构型 −0.68 −1.92 −0.51 0.59 0.39 −1.34 4.17 0.01104 0 +1.8×10−4
    舵0配平构型 −4.43 0 0 0 0 0 4.14 0.01117 0.0002 +3.1×10−4
    下载: 导出CSV

    表  10  机翼前移构型变弯度优化结果(CL=0.24)

    Table  10.   Variable camber optimization results of forward wing configuration (CL= 0.24)

    构型 偏转角度/(°) α/(°) CD CM ΔCD
    舵0 舵1 舵2 舵3 舵4 舵5
    不变弯度构型 0 0 0 0 0 0 3.50 0.01177 0.0041
    变弯度构型 2.73 4.00 1.00 1.65 1.11 3.11 2.87 0.01107 0.0176 −7.0×10−4
    变弯度配平构型 −2.05 −1.64 0.02 −0.45 0.26 −0.33 3.64 0.01222 0.0003 +4.5×10−4
    舵0配平构型 −4.24 0 0 0 0 0 3.62 0.01231 0.0001 +5.4×10−4
    下载: 导出CSV
  • [1] AGARWAL R. Environmentally responsible air and ground transportation[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: 965.
    [2] DEL R, FOLLEN G, WAHLS R, et al. Subsonic fixed wing project overview of technical challenges for energy efficient, environmentally compatible subsonic transport aircraft[C]//Proceedings of the 50th AIAA Aerospace Science Meeting. Reston: AIAA, 2012: 9-12.
    [3] OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82: 1-23. doi: 10.1016/j.paerosci.2015.12.002
    [4] BROWN M, VOS R. Conceptual design and evaluation of blended-wing body aircraft[C]//Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 0522.
    [5] 王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 623046.

    WANG G, ZHANG B Q, ZHANG M H, et al. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623046(in Chinese).
    [6] CAI Y, XIE J C, HARRISON E, et al. Assessment of longitudinal stability-and-control characteristics of hybrid wing body aircraft in conceptual design[C]//Proceedings of the AIAA Aviation 2021 Forum. Reston: AIAA, 2021: 2448.
    [7] REIST T A, ZINGG D W. Aerodynamic shape optimization of a blended-wing-body regional transport for a short range mission[C]//Proceedings of the 31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013: 2414.
    [8] LYU Z J, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5): 1604-1617. doi: 10.2514/1.C032491
    [9] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084
    [10] SOFLA A Y N, MEGUID S A, TAN K T, et al. Shape morphing of aircraft wing: status and challenges[J]. Materials & Design, 2010, 31(3): 1284-1292.
    [11] LACHENAL X, DAYNES S, WEAVER P M. Review of morphing concepts and materials for wind turbine blade applications[J]. Wind Energy, 2013, 16(2): 283-307. doi: 10.1002/we.531
    [12] KOTA S. Shape control of adaptive structures using compliant mechanisms: AFRL-SR-BL-T-00-0135[R]. Arlington: Air Force office of Scientific Research, 2000.
    [13] YOKOZEKI T, SUGIURA A, HIRANO Y. Development and wind tunnel test of variable camber morphing wing[C]//Proceedings of the 22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston: AIAA, 2014: 1261.
    [14] MARQUES M, GAMBOA P, ANDRADE E. Design of a variable camber flap for minimum drag and improved energy efficiency[C]//Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: 2196.
    [15] 郭同彪, 白俊强, 杨体浩. 后缘连续变弯度对跨声速翼型气动特性的影响[J]. 航空学报, 2016, 37(2): 513-521.

    GUO T B, BAI J Q, YANG T H. Influence of continuous trailing-edge variable camber on aerodynamic characteristics of transonic airfoils[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 513-521(in Chinese).
    [16] 梁煜, 单肖文. 大型民机翼型变弯度气动特性分析与优化设计[J]. 航空学报, 2016, 37(3): 790-798.

    LIANG Y, SHAN X W. Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 790-798(in Chinese).
    [17] MARTINS J. Fuel burn reduction through wing morphing[M]//BLOCKLEY R, SHYY W. Encyclopedia of Aerospace Engineering Green Aviation. New York: Wiley, 2016: 75-79.
    [18] LYU Z J, MARTINS J R R A. Aerodynamic shape optimization of an adaptive morphing trailing-edge wing[J]. Journal of Aircraft, 2015, 52(6): 1951-1970. doi: 10.2514/1.C033116
    [19] CHINAUD M, ROUCHON J F, DUHAYON E, et al. Trailing-edge dynamics and morphing of a deformable flat plate at high Reynolds number by time-resolved PIV[J]. Journal of Fluids and Structures, 2014, 47: 41-54. doi: 10.1016/j.jfluidstructs.2014.02.007
    [20] PRECUP N, MOR M, LIVNE E. An active variable camber continuous trailing edge flapped wing wind tunnel model for aeroelastic “In-flight” shape optimization tests[C]//Proceedings of the 2018 Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2018: 3106.
    [21] NGUYEN N T, CRAMER N B, HASHEMI K E, et al. Real-time adaptive drag minimization wind tunnel investigation of a flexible wing with variable camber continuous trailing edge flap system[C]//Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019: 3156.
    [22] REIST T A, KOO D, ZINGG D W. Aircraft cruise drag reduction through variable camber using existing control surfaces[J]. Journal of Aircraft, 2022, 59(6): 1406-1415. doi: 10.2514/1.C036754
    [23] 何萌, 杨体浩, 白俊强, 等. 基于后缘襟翼偏转的大型客机变弯度技术减阻收益[J]. 航空学报, 2020, 41(7): 123462.

    HE M, YANG T H, BAI J Q, et al. Drag reduction benefits of variable camber technology of airliner based on trailing-edge flap deflection[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 123462(in Chinese).
    [24] KAUL U K, NGUYEN N T. Drag optimization study of variable camber continuous trailing edge flap (VCCTEF) using OVERFLOW[C]//Proceedings of the 32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014: 2444.
    [25] MITRIDIS D, PAPANIKOLATOS N, PANAGIOTOU P, et al. Morphing technologies assessment on a tactical BWB UAV reference platform[C]//Proceedings of the AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: 1985.
    [26] LIOU M F, KIM H, LEE B, et al. Aerodynamic design of integrated propulsion-airframe configuration of a hybrid wing body aircraft[J]. Shock Waves, 2019, 29(8): 1043-1064. doi: 10.1007/s00193-019-00933-z
    [27] KIM H, LIOU M F. Flow simulation and drag decomposition study of N3-X hybrid wing-body configuration[J]. Aerospace Science and Technology, 2019, 85: 24-39. doi: 10.1016/j.ast.2018.11.047
    [28] FELDER J, KIM H, BROWN G, et al. An examination of the effect of boundary layer ingestion on turboelectric distributed propulsion systems[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: 300.
    [29] 白俊强, 雷锐午, 杨体浩, 等. 基于伴随理论的大型客机气动优化设计研究进展[J]. 航空学报, 2019, 40(1): 522642.

    BAI J Q, LEI R W, YANG T H, et al. Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522642(in Chinese).
    [30] 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安: 西北工业大学, 2016: 67-90.

    CHEN S. Gradient-based aerodynamic shape optimization design method and its application[D]. Xi’an: Northwestern Polytechnical University, 2016: 67-90(in Chinese).
  • 加载中
图(24) / 表(10)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  97
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 录用日期:  2023-03-20
  • 网络出版日期:  2023-04-23
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答