Drag reduction characteristics analysis of variable camber based on plane parameters of blended wing body configuration
-
摘要:
变弯度技术能提升飞行器气动性能,与翼身融合(BWB)布局相结合可进一步增强其气动优势。但无尾 BWB 仅靠后缘舵面配平,纵向力臂短,配平阻力惩罚大,因此进行BWB后缘变弯度设计时需充分考虑配平阻力损失。针对无尾 BWB,考虑平面参数对后缘舵面配平能力的影响,基于全局优化方法研究了不同机翼后掠角和机翼位置的BWB构型上后缘变弯度技术的减阻原理和作用效果。结果表明:在不同升力系数下,配平阻力损失都显著减小变弯度技术的减阻收益。BWB 平面参数通过影响激波强度与配平能力,左右变弯度技术的减阻收益并影响舵面偏转角度。相比于基准构型,增大后掠角会使得小升力系数下减阻收益增加、大升力系数下降低;而机翼位置靠前,则会使得不考虑力矩配平时减阻收益增加、考虑力矩配平时阻收益降低。工程上进行无尾飞行器后缘变弯度设计时,应综合考虑后缘变弯度的减阻收益以及变形所需的舵面偏转角度。
Abstract:The variable camber technology can adaptively improve the aerodynamic performance of the aircraft, so combining it with the blended wing body (BWB) configuration can further exert its aerodynamic advantages. However, the tailless BWB only uses the trailing edge flap surface for trimming, with a shorter longitudinal moment arm, resulting in a large penalty in trim drag. Therefore, the trimming of drag loss should be fully considered in the design of the variable camber at the trailing edge of BWB. Since the plane parameters would affect the trimming capability of each flap surface at the trailing edge of tailless BWB, this paper adopted the global optimization method to study the drag reduction principle and effects of the variable camber technology at the trailing edge of BWB with different sweepback angles and different wing positions. The results show that, under different lift coefficients, the trim drag loss significantly reduces the drag reduction benefits of the camber variation technology. Secondly, the planar parameters of BWB affect the shock wave intensity and trim ability, thus influencing the drag reduction benefits of the camber variation technology and the deflection angles of the control surfaces. Compared with the baseline configuration, increasing the sweep angle can increase the drag reduction benefits at small lift coefficients and decrease them at large lift coefficients. When the wing position is forward, the drag reduction benefits increase when moment trimming is not considered, but decrease when moment trimming is considered.When designing the variable camber at the trailing edge of the tailless aircraft in engineering, it is necessary to comprehensively consider the drag reduction benefits of the variable camber at the trailing edge and the deflection angle of the flap surface required for deformation.
-
表 1 基准构型几何参数
Table 1. Geometric parameters of baseline configuration
参数 数值 展长/m 65.5 机身长/m 41 参考面积/m2 840 前缘后掠角/(°) 28 力矩参考点/m 24.2 静稳态裕度/% 7.83 表 2 巡航状态3个构型的气动力系数
Table 2. Aerodynamic coefficients of three configurations in cruising state
构型 α/(°) CL CD CM L/D 基准构型 2.58 0.14 0.007 95 0.004 0 17.62 3.12 0.19 0.009 04 0.000 0 21.00 3.63 0.24 0.011 48 −0.004 9 20.91 变后掠构型 2.78 0.14 0.007 61 0.004 4 18.39 3.40 0.19 0.008 98 0.000 5 21.16 3.99 0.24 0.010 86 −0.003 6 22.17 机翼前移构型 2.45 0.14 0.007 80 0.004 2 17.94 2.96 0.19 0.009 05 0.000 3 20.98 3.50 0.24 0.011 77 −0.004 1 20.39 表 3 变后掠构型变弯度优化结果(CL=0.19)
Table 3. Variable camber optimization results of variable sweepback angle configuration (CL= 0.19)
构型 偏转角度/(°) α/(°) CD CM ΔCD 舵0 舵1 舵2 舵3 舵4 舵5 不变弯度构型 0 0 0 0 0 0 3.40 0.00898 0.0005 变弯度构型 0.70 1.28 0.70 2.32 2.97 2.15 2.80 0.00882 − 0.0005 −0.8×10−4 变弯度配平构型 −0.38 −0.46 −0.41 0.42 0.90 0.46 3.42 0.00894 0 −0.4×10−4 舵0配平构型 0.63 0 0 0 0 0 3.38 0.00898 0 0 表 4 机翼前移构型变弯度优化结果(CL=0.19)
Table 4. Variable camber optimization results of forward wing configuration (CL= 0.19)
构型 偏转角度/(°) α/(°) CD CM ΔCD 舵0 舵1 舵2 舵3 舵4 舵5 不变弯度构型 0 0 0 0 0 0 2.96 0.00905 0.0003 变弯度构型 0.96 0.48 −0.20 0.02 1.33 1.68 2.81 0.00895 − 0.0036 −1.0×10−4 变弯度配平构型 0.29 1.09 −0.09 −1.43 0.86 0.84 2.97 0.00903 0 −0.2×10−4 舵0配平构型 0.42 0 0 0 0 0 2.95 0.00905 0 0 表 5 基准构型变弯度优化结果(CL=0.14)
Table 5. Variable camber optimization results of baseline configuration (CL= 0.14)
构型 偏转角度/(°) α/(°) CD CM ΔCD 舵0 舵1 舵2 舵3 舵4 舵5 不变弯度构型 0 0 0 0 0 0 2.58 0.00795 0.0040 变弯度构型 −0.21 0.02 −1.11 −1.28 1.31 0.09 2.80 0.00787 0.0072 −0.8×10−4 变弯度配平构型 0.68 1.75 −0.50 −0.09 0.42 1.65 2.45 0.00792 0.0004 −0.3×10−4 舵0配平构型 4.91 0 0 0 0 0 2.41 0.00817 0.0003 +2.2×10−4 表 6 变后掠构型变弯度优化结果(CL=0.14)
Table 6. Variable camber optimization results of variable sweepback angle configuration (CL= 0.14)
构型 偏转角度/(°) α/(°) CD CM ΔCD 舵0 舵1 舵2 舵3 舵4 舵5 不变弯度构型 0 0 0 0 0 0 2.78 0.00761 0.0044 变弯度构型 0.76 1.09 0.76 2.01 2.58 1.96 2.22 0.00748 − 0.0072 −1.3×10−4 变弯度配平构型 −0.84 1.34 −0.40 0.44 2.57 0.56 2.61 0.00755 0 −0.6×10−4 舵0配平构型 6.14 0 0 0 0 0 2.58 0.00796 0 +3.5×10−4 表 7 机翼前移构型变弯度优化结果(CL=0.14)
Table 7. Variable camber optimization results of forward wing configuration (CL= 0.14)
构型 偏转角度/(°) α/(°) CD CM ΔCD 舵0 舵1 舵2 舵3 舵4 舵5 不变弯度构型 0 0 0 0 0 0 2.45 0.00780 0.0042 变弯度构型 −0.09 −0.48 −1.54 −0.91 0.61 1.46 2.67 0.00767 0.0076 −1.3×10−4 变弯度配平构型 1.71 1.12 0.98 −2.36 1.28 2.22 2.31 0.00791 0 +1.1×10−4 舵0配平构型 4.9 0 0 0 0 0 2.32 0.00802 0 +2.2×10−4 表 8 基准构型变弯度优化结果(CL=0.24)
Table 8. Variable camber optimization results of baseline configuration (CL= 0.24)
构型 偏转角度/(°) α/(°) CD CM ΔCD 舵0 舵1 舵2 舵3 舵4 舵5 不变弯度构型 0 0 0 0 0 0 3.63 0.01148 − 0.0049 变弯度构型 1.46 2.65 0.09 0.74 0.89 2.25 3.22 0.01095 − 0.0157 −5.3×10−4 变弯度配平构型 −1.18 −2.47 0.50 −0.42 −0.53 −0.17 3.83 0.01199 − 0.0003 +5.1×10−4 舵0配平构型 −5.89 0 0 0 0 0 3.82 0.01228 − 0.0001 +8×10−4 表 9 变后掠构型变弯度优化结果(CL=0.24)
Table 9. Variable camber optimization results of variable sweepback angle configuration (CL= 0.24)
构型 偏转角度/(°) α/(°) CD CM ΔCD 舵0 舵1 舵2 舵3 舵4 舵5 不变弯度构型 0 0 0 0 0 0 3.99 0.01086 − 0.0036 变弯度构型 0.49 1.10 0.69 2.05 3.21 1.85 3.46 0.01050 − 0.0154 −3.6×10−4 变弯度配平构型 −0.68 −1.92 −0.51 0.59 0.39 −1.34 4.17 0.01104 0 +1.8×10−4 舵0配平构型 −4.43 0 0 0 0 0 4.14 0.01117 0.0002 +3.1×10−4 表 10 机翼前移构型变弯度优化结果(CL=0.24)
Table 10. Variable camber optimization results of forward wing configuration (CL= 0.24)
构型 偏转角度/(°) α/(°) CD CM ΔCD 舵0 舵1 舵2 舵3 舵4 舵5 不变弯度构型 0 0 0 0 0 0 3.50 0.01177 − 0.0041 变弯度构型 2.73 4.00 1.00 1.65 1.11 3.11 2.87 0.01107 − 0.0176 −7.0×10−4 变弯度配平构型 −2.05 −1.64 0.02 −0.45 0.26 −0.33 3.64 0.01222 − 0.0003 +4.5×10−4 舵0配平构型 −4.24 0 0 0 0 0 3.62 0.01231 − 0.0001 +5.4×10−4 -
[1] AGARWAL R. Environmentally responsible air and ground transportation[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: 965. [2] DEL R, FOLLEN G, WAHLS R, et al. Subsonic fixed wing project overview of technical challenges for energy efficient, environmentally compatible subsonic transport aircraft[C]//Proceedings of the 50th AIAA Aerospace Science Meeting. Reston: AIAA, 2012: 9-12. [3] OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82: 1-23. doi: 10.1016/j.paerosci.2015.12.002 [4] BROWN M, VOS R. Conceptual design and evaluation of blended-wing body aircraft[C]//Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 0522. [5] 王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 623046.WANG G, ZHANG B Q, ZHANG M H, et al. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623046(in Chinese). [6] CAI Y, XIE J C, HARRISON E, et al. Assessment of longitudinal stability-and-control characteristics of hybrid wing body aircraft in conceptual design[C]//Proceedings of the AIAA Aviation 2021 Forum. Reston: AIAA, 2021: 2448. [7] REIST T A, ZINGG D W. Aerodynamic shape optimization of a blended-wing-body regional transport for a short range mission[C]//Proceedings of the 31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013: 2414. [8] LYU Z J, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5): 1604-1617. doi: 10.2514/1.C032491 [9] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084 [10] SOFLA A Y N, MEGUID S A, TAN K T, et al. Shape morphing of aircraft wing: status and challenges[J]. Materials & Design, 2010, 31(3): 1284-1292. [11] LACHENAL X, DAYNES S, WEAVER P M. Review of morphing concepts and materials for wind turbine blade applications[J]. Wind Energy, 2013, 16(2): 283-307. doi: 10.1002/we.531 [12] KOTA S. Shape control of adaptive structures using compliant mechanisms: AFRL-SR-BL-T-00-0135[R]. Arlington: Air Force office of Scientific Research, 2000. [13] YOKOZEKI T, SUGIURA A, HIRANO Y. Development and wind tunnel test of variable camber morphing wing[C]//Proceedings of the 22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston: AIAA, 2014: 1261. [14] MARQUES M, GAMBOA P, ANDRADE E. Design of a variable camber flap for minimum drag and improved energy efficiency[C]//Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: 2196. [15] 郭同彪, 白俊强, 杨体浩. 后缘连续变弯度对跨声速翼型气动特性的影响[J]. 航空学报, 2016, 37(2): 513-521.GUO T B, BAI J Q, YANG T H. Influence of continuous trailing-edge variable camber on aerodynamic characteristics of transonic airfoils[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 513-521(in Chinese). [16] 梁煜, 单肖文. 大型民机翼型变弯度气动特性分析与优化设计[J]. 航空学报, 2016, 37(3): 790-798.LIANG Y, SHAN X W. Aerodynamic analysis and optimization design for variable camber airfoil of civil transport jet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 790-798(in Chinese). [17] MARTINS J. Fuel burn reduction through wing morphing[M]//BLOCKLEY R, SHYY W. Encyclopedia of Aerospace Engineering Green Aviation. New York: Wiley, 2016: 75-79. [18] LYU Z J, MARTINS J R R A. Aerodynamic shape optimization of an adaptive morphing trailing-edge wing[J]. Journal of Aircraft, 2015, 52(6): 1951-1970. doi: 10.2514/1.C033116 [19] CHINAUD M, ROUCHON J F, DUHAYON E, et al. Trailing-edge dynamics and morphing of a deformable flat plate at high Reynolds number by time-resolved PIV[J]. Journal of Fluids and Structures, 2014, 47: 41-54. doi: 10.1016/j.jfluidstructs.2014.02.007 [20] PRECUP N, MOR M, LIVNE E. An active variable camber continuous trailing edge flapped wing wind tunnel model for aeroelastic “In-flight” shape optimization tests[C]//Proceedings of the 2018 Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2018: 3106. [21] NGUYEN N T, CRAMER N B, HASHEMI K E, et al. Real-time adaptive drag minimization wind tunnel investigation of a flexible wing with variable camber continuous trailing edge flap system[C]//Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019: 3156. [22] REIST T A, KOO D, ZINGG D W. Aircraft cruise drag reduction through variable camber using existing control surfaces[J]. Journal of Aircraft, 2022, 59(6): 1406-1415. doi: 10.2514/1.C036754 [23] 何萌, 杨体浩, 白俊强, 等. 基于后缘襟翼偏转的大型客机变弯度技术减阻收益[J]. 航空学报, 2020, 41(7): 123462.HE M, YANG T H, BAI J Q, et al. Drag reduction benefits of variable camber technology of airliner based on trailing-edge flap deflection[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 123462(in Chinese). [24] KAUL U K, NGUYEN N T. Drag optimization study of variable camber continuous trailing edge flap (VCCTEF) using OVERFLOW[C]//Proceedings of the 32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014: 2444. [25] MITRIDIS D, PAPANIKOLATOS N, PANAGIOTOU P, et al. Morphing technologies assessment on a tactical BWB UAV reference platform[C]//Proceedings of the AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: 1985. [26] LIOU M F, KIM H, LEE B, et al. Aerodynamic design of integrated propulsion-airframe configuration of a hybrid wing body aircraft[J]. Shock Waves, 2019, 29(8): 1043-1064. doi: 10.1007/s00193-019-00933-z [27] KIM H, LIOU M F. Flow simulation and drag decomposition study of N3-X hybrid wing-body configuration[J]. Aerospace Science and Technology, 2019, 85: 24-39. doi: 10.1016/j.ast.2018.11.047 [28] FELDER J, KIM H, BROWN G, et al. An examination of the effect of boundary layer ingestion on turboelectric distributed propulsion systems[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: 300. [29] 白俊强, 雷锐午, 杨体浩, 等. 基于伴随理论的大型客机气动优化设计研究进展[J]. 航空学报, 2019, 40(1): 522642.BAI J Q, LEI R W, YANG T H, et al. Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522642(in Chinese). [30] 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安: 西北工业大学, 2016: 67-90.CHEN S. Gradient-based aerodynamic shape optimization design method and its application[D]. Xi’an: Northwestern Polytechnical University, 2016: 67-90(in Chinese). -