留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态尺度观测器的多无人机立体包含控制

王昊 李新凯 张宏立 杨加秀 窦磊

王昊,李新凯,张宏立,等. 基于动态尺度观测器的多无人机立体包含控制[J]. 北京航空航天大学学报,2025,51(2):655-667 doi: 10.13700/j.bh.1001-5965.2023.0026
引用本文: 王昊,李新凯,张宏立,等. 基于动态尺度观测器的多无人机立体包含控制[J]. 北京航空航天大学学报,2025,51(2):655-667 doi: 10.13700/j.bh.1001-5965.2023.0026
WANG H,LI X K,ZHANG H L,et al. Multi-UAV stereoscopic inclusion control based on dynamic scale observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):655-667 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0026
Citation: WANG H,LI X K,ZHANG H L,et al. Multi-UAV stereoscopic inclusion control based on dynamic scale observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):655-667 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0026

基于动态尺度观测器的多无人机立体包含控制

doi: 10.13700/j.bh.1001-5965.2023.0026
基金项目: 国家自然科学基金(62263030);新疆维吾尔自治区自然科学基金青年项目(2022D01C86)
详细信息
    通讯作者:

    E-mail:lxk@xju.edu.cn

  • 中图分类号: V221.3;TB553

Multi-UAV stereoscopic inclusion control based on dynamic scale observer

Funds: National Natural Science Foundation of China (62263030); Youth Project of Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01C86)
More Information
  • 摘要:

    针对欠驱动多无人机包含控制中个体无人机无法获取全局信息,并受到未知外部扰动,难以快速收敛的问题,提出一种基于动态尺度观测器的欠驱动多无人机分布式固定时间控制策略。设计分布式固定时间观测器,使各无人机在大部分个体无法获取目标状态条件下能快速估计出完成包含任务所需空间状态;提出一种基于浸入与不变理论的有限时间动态尺度观测器,能快速准确地估计各无人机所受外部扰动;设计非奇异分布式固定时间控制器,利用局部信息实现了欠驱动多无人机系统的快速立体包含控制。所提控制策略使系统的收敛时间上界不受初始状态影响,只取决于信息传递阵特征值和控制器参数。通过理论证明和仿真实验验证了所设计控制器的优越性。

     

  • 图 1  四旋翼无人机坐标系

    Figure 1.  Quadrotor UAV coordinate system

    图 2  欠驱动多无人机系统编队-包含控制框架

    Figure 2.  Under-actuated multi-UAV formation inclusion control framework

    图 3  无人机系统的通信拓扑

    Figure 3.  Communication topology of UAV system

    图 4  各无人机位置观测器误差

    Figure 4.  Position observation errors of each UAV

    图 5  各无人机速度观测器误差

    Figure 5.  Speed observation errors of each UAV

    图 6  无人机系统空间运动轨迹

    Figure 6.  Spatial motion trajectory of UVA system

    图 7  各无人机位置跟踪误差

    Figure 7.  Position tracking error of each UAV

    图 8  各无人机解算出的姿态角和跟踪误差

    Figure 8.  Attitude angle and tracking errors solved by each UAV

    图 9  各无人机控制输入

    Figure 9.  Control inputs of each UAV

    图 10  分布式观测器位置误差对比

    Figure 10.  Position error comparison of distributed observer

    图 11  分布式观测器速度误差对比

    Figure 11.  Speed error comparison of distributed observer

    图 12  第一架无人机各位置子系统扰动估计误差

    Figure 12.  Perturbation estimation error of subsystem of first UAV at different positions

    图 13  第一架无人机各姿态子系统扰动估计误差

    Figure 13.  Perturbation estimation error of each attitude subsystem of first UAV

    图 14  不同类型干扰下扰动观测误差对比

    Figure 14.  Comparison of perturbation observation errors under different types of perturbations

    图 15  不同Tf对动态尺度因子的影响

    Figure 15.  Effect of different Tf on dynamic scale factor

    图 16  不同监督因子对动态尺度误差的影响

    Figure 16.  Effect of different supervision factors on dynamic scale error

    图 17  不同监督因子对动态尺度因子的影响

    Figure 17.  Effect of different supervision factors on dynamic scale factor

    图 18  不同控制器跟踪轨迹对比

    Figure 18.  Comparison of trajectory tracking of different controllers

    图 19  不同控制器轨迹跟踪误差对比

    Figure 19.  Comparison of trajectory tracking errors of different controllers

    表  1  无人机物理参数

    Table  1.   Physical parameters of each UAV

    \
    参数 数值 参数 数值
    mu /kg 2.00 lu/m 0.20
    kx/(N·s·rad−1) 0.01 kθ/(N·s·rad−1) 0.01
    ky/(N·s·rad−1) 0.01 kφ/(N·s·rad−1) 0.01
    kz/(N·s·rad−1) 0.01 kψ/(N·s·rad−1) 0.01
    Ix/(N·s2·rad−2) 1.75 Iy/(N·s2·rad−2) 1.75
    Iz/(N·s2·rad−2) 3.50 g/(m·s−2) 10.00
    下载: 导出CSV

    表  2  外部包围层无人机包含矢量

    Table  2.   Inclusion vector of UAV in external layer

    lli(t) 包含矢量/m
    ll1(t) [1+0.353 5δ(t) 1.707−0.353 5δ(t) δ(t)]T
    ll2(t) [−1−0.353 5δ(t) 1.707−0.353 5δ(t) δ(t)]T
    ll3(t) [−1−0.353 5δ(t) −1.707+0.353 5δ(t) δ(t)]T
    ll4(t) [1+0.353 5δ(t) −1.707+0.353 5δ(t) δ(t)]T
    ll5(t) [1.707−0.353 5δ(t) 1+0.353 5δ(t) −δ(t)]T
    ll6(t) [−1.707+0.353 5δ(t) 1+0.353 5δ(t) −δ(t)]T
    ll7(t) [−1.707+0.353 5δ(t) −1−0.353 5δ(t) −δ(t)]T
    ll8(t) [1.707−0.353 5δ(t) −1−0.353 5δ(t) −δ(t)]T
    下载: 导出CSV

    表  3  无人机各子系统所受外部扰动模型

    Table  3.   External perturbation to each UAV

    dij(t) 扰动/(N·m)
    di1(t) 2sin(0.1πt)
    di2(t) 4(1−e−t)
    di3(t) 2
    di4(t) 3(tanh(t)+e−t)
    di5(t) 5tanh(t)
    di6(t) 2cos(3t)+2sin(0.5πt)
    下载: 导出CSV

    表  4  控制器参数

    Table  4.   Controller parameters

    参数 数值 参数 数值
    T1 0.6 Tf 2.00
    p1 0.9 p2 0.25
    q1 1.9 q2 1.75
    ll/lf 2.0 λ 2.00
    k3 1.1 k4 1.00
    k5 1.5 k71 1.5
    k72 2.0 k8 1.00
    k9 1.1 k10 1.00
    m 0.3 α 5.00
    γ 2.0 Δ 0.01
    下载: 导出CSV

    表  5  不同类型干扰下扰动观测效果

    Table  5.   Observation effect of different perturbations

    扰动/(N·m) T/s dRMSE
    本文方法 I&I方法 本文方法 I&I方法
    5 0.06 0.61 0.368 8 0.590 1
    5cost 0.05 0.029 6 0.060 6
    5−5coste0.05t 0.03 0.011 3 0.117 7
    下载: 导出CSV

    表  6  观测器和控制器收敛效果对比

    Table  6.   Comparison of observer and controller convergence effects

    控制效果 T/s dRMSE
    本文方法 FTSMO方法 本文方法 FTSMO方法
    分布式观测器 0.41 3.34 0.013 0.214
    控制器 1.28 2.62 0.041 0.100
    下载: 导出CSV
  • [1] NI J K, TANG Y, SHI P. A new fixed-time consensus tracking approach for second-order multiagent systems under directed communication topology[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(4): 2488-2500. doi: 10.1109/TSMC.2019.2915562
    [2] HUA C C, YOU X, GUAN X P. Adaptive leader-following consensus for second-order time-varying nonlinear multiagent systems[J]. IEEE Transactions on Cybernetics, 2017, 47(6): 1532-1539. doi: 10.1109/TCYB.2016.2551220
    [3] FANG H, WEI Y, CHEN J, et al. Flocking of second-order multiagent systems with connectivity preservation based on algebraic connectivity estimation[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 1067-1077. doi: 10.1109/TCYB.2016.2537307
    [4] 王丹丹, 宗群, 张博渊, 等. 多无人机完全分布式有限时间编队控制[J]. 控制与决策, 2019, 34(12): 2656-2660.

    WANG D D, ZONG Q, ZHANG B Y, et al. Fully distributed finite-time formation control for multiple UAVs[J]. Control and Decision, 2019, 34(12): 2656-2660 (in Chinese).
    [5] 孙梦薇, 任璐, 孙长银, 等. 切换拓扑下动态事件触发多智能体系统固定时间一致性[J]. 自动化学报, 2023, 49(6): 1295-1305.

    SUN M W, REN L, SUN C Y, et al. Dynamic event-triggered fixed-time consensus control of multi-agent systems under switching topologies[J]. Acta Automatica Sinica, 2023, 49(6): 1295-1305 (in Chinese).
    [6] 魏志强, 翁哲鸣, 化永朝, 等. 切换拓扑下异构无人集群编队-合围跟踪控制[J]. 航空学报, 2023, 44(2): 252-267.

    WEI Z Q, WENG Z M, HUA Y Z, et al. Formation-containment tracking control for heterogeneous unmanned swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 252-267 (in Chinese).
    [7] LU Y Z, DONG X W, LI Q D, et al. Time-varying group formation-containment tracking control for general linear multiagent systems with unknown inputs[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 11055-11067. doi: 10.1109/TCYB.2021.3058086
    [8] WANG X Y, LI S H, SHI P. Distributed finite-time containment control for double-integrator multiagent systems[J]. IEEE Transactions on Cybernetics, 2014, 44(9): 1518-1528. doi: 10.1109/TCYB.2013.2288980
    [9] DONG X W, HUA Y Z, ZHOU Y, et al. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(1): 229-240. doi: 10.1109/TASE.2018.2792327
    [10] LÜ H, HE W L, HAN Q L, et al. Finite-time containment control for nonlinear multi-agent systems with external disturbances[J]. Information Sciences, 2020, 512: 338-351. doi: 10.1016/j.ins.2019.05.049
    [11] XIAO S Y, DONG J X. Distributed fault-tolerant containment control for nonlinear multi-agent systems under directed network topology via hierarchical approach[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(4): 806-816. doi: 10.1109/JAS.2021.1003928
    [12] CAI Y L, ZHANG H G, WANG Y C, et al. Adaptive bipartite fixed-time time-varying output formation-containment tracking of heterogeneous linear multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4688-4698. doi: 10.1109/TNNLS.2021.3059763
    [13] LI D Y, GE S S, HE W, et al. Distributed formation control of multiple euler–lagrange systems: a multilayer framework[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 3325-3332. doi: 10.1109/TCYB.2020.3022535
    [14] XU Y, LI D Y, LUO D L, et al. Two-layer distributed hybrid affine formation control of networked Euler–Lagrange systems[J]. Journal of the Franklin Institute, 2019, 356(4): 2172-2197. doi: 10.1016/j.jfranklin.2018.11.029
    [15] YU Z Q, LIU Z X, ZHANG Y M, et al. Distributed finite-time fault-tolerant containment control for multiple unmanned aerial vehicles[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(6): 2077-2091. doi: 10.1109/TNNLS.2019.2927887
    [16] 刘伯健, 李爱军, 郭永, 等. 带有输入受限的无人机精确编队合围容错控制[J]. 航空学报, 2023, 44(9): 300-314.

    LIU B J, LI A J, GUO Y, et al. Fault-tolerant containment control for precise formation of UAVs with input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 300-314 (in Chinese).
    [17] 郑伟铭, 徐扬, 罗德林. 多四旋翼无人机系统分布式分层编队合围控制[J]. 北京航空航天大学学报, 2022, 48(6): 1091-1105.

    ZHENG W M, XU Y, LUO D L. Distributed hierarchical formation-containment control of multiple quadrotor UAV systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1091-1105 (in Chinese).
    [18] 孙小童, 郭戈, 张鹏飞. 非匹配扰动下的多智能体系统固定时间一致跟踪[J]. 自动化学报, 2021, 47(6): 1368-1376.

    SUN X T, GUO G, ZHANG P F. Fixed-time consensus tracking of multi-agent systems under unmatched disturbance[J]. Acta Automatica Sinica, 2021, 47(6): 1368-1376(in Chinese).
    [19] 王怡怡, 赵志良. 二自由度无人直升机的非线性自抗扰姿态控制[J]. 自动化学报, 2021, 47(8): 1951-1962.

    WANG Y Y, ZHAO Z L. Nonlinear active disturbance rejection attitude control of two-DOF unmanned helicopter[J]. Acta Automatica Sinica, 2021, 47(8): 1951-1962 (in Chinese).
    [20] 范云生, 陈欣宇, 赵永生, 等. 基于扩张状态观测器的四旋翼吊挂飞行系统非线性控制[J]. 自动化学报2023, 49(8): 1758-1770.

    FAN Y S, CHEN X Y, ZHAO Y S, et. al. Nonlinear control of quadrotor suspension system based on extended state observer[J]. Acta Automatica Sinica, 2023, 49(8): 1758−1770 (in Chinese).
    [21] 夏琳琳, 丛靖宇, 马文杰, 等. 基于浸入与不变原理的四旋翼姿态系统反步滑模控制[J]. 中国惯性技术学报, 2017, 25(5): 695-700.

    XIA L L, CONG J Y, MA W J, et al. Backstepping sliding mode control of quadrotor attitude system based on immersion and invariance[J]. Journal of Chinese Inertial Technology, 2017, 25(5): 695-700 (in Chinese).
    [22] 刘柏均, 侯明善, 余英. 带攻击角度约束的浸入与不变制导律[J]. 系统工程与电子技术, 2018, 40(5): 1085-1090. doi: 10.3969/j.issn.1001-506X.2018.05.19

    LIU B J, HOU M S, YU Y. Guidance law with impact angle constraints based on immersion and invariance[J]. Systems Engineering and Electronics, 2018, 40(5): 1085-1090 (in Chinese). doi: 10.3969/j.issn.1001-506X.2018.05.19
    [23] LI X K, ZHANG H L, FAN W H, et al. Finite-time control for quadrotor based on composite barrier Lyapunov function with system state constraints and actuator faults[J]. Aerospace Science and Technology, 2021, 119: 107063. doi: 10.1016/j.ast.2021.107063
    [24] ZUO Z Y, HAN Q L, NING B D, et al. An overview of recent advances in fixed-time cooperative control of multiagent systems[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2322-2334. doi: 10.1109/TII.2018.2817248
    [25] KHANZADEH A, POURGHOLI M. Fixed-time leader–follower consensus tracking of second-order multi-agent systems with bounded input uncertainties using non-singular terminal sliding mode technique[J]. IET Control Theory & Applications, 2018, 12(5): 679-686.
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  86
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 录用日期:  2023-03-17
  • 网络出版日期:  2023-04-11
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答