-
摘要:
针对欠驱动多无人机包含控制中个体无人机无法获取全局信息,并受到未知外部扰动,难以快速收敛的问题,提出一种基于动态尺度观测器的欠驱动多无人机分布式固定时间控制策略。设计分布式固定时间观测器,使各无人机在大部分个体无法获取目标状态条件下能快速估计出完成包含任务所需空间状态;提出一种基于浸入与不变理论的有限时间动态尺度观测器,能快速准确地估计各无人机所受外部扰动;设计非奇异分布式固定时间控制器,利用局部信息实现了欠驱动多无人机系统的快速立体包含控制。所提控制策略使系统的收敛时间上界不受初始状态影响,只取决于信息传递阵特征值和控制器参数。通过理论证明和仿真实验验证了所设计控制器的优越性。
-
关键词:
- 欠驱动多无人机系统 /
- 有限时间动态尺度观测器 /
- 浸入与不变 /
- 固定时间控制 /
- 立体包含控制
Abstract:To address the problem that individual unmanned aerial vehicle (UAV) in under-actuated multi-UAV inclusion control cannot obtain global information and is subject to unknown external perturbations, making it difficult to converge quickly, this paper proposed a distributed fixed-time control strategy for under-actuated UAVs based on a dynamic scale observer. Firstly, a distributed fixed-time observer was designed to enable each UAV to quickly estimate the space state required to complete the contained mission when most UAVs fail to obtain the target state. Secondly, a finite-time dynamic scale observer based on immersion and invariance theory was proposed to quickly and accurately estimate the external perturbations to each UAV. Finally, a non-singular distributed fixed-time controller was designed to achieve the fast stereoscopic inclusion control of an under-actuated multi-UAV system by using local information. With the proposed control strategy, the upper bound on the convergence time of the system was independent of the initial state and depended only on the eigenvalues of the information transfer array and the controller parameters. The superiority of the designed controller was verified by theoretical demonstration and simulation experiments.
-
表 1 无人机物理参数
Table 1. Physical parameters of each UAV
参数 数值 \参数 数值 mu /kg 2.00 lu/m 0.20 kx/(N·s·rad−1) 0.01 kθ/(N·s·rad−1) 0.01 ky/(N·s·rad−1) 0.01 kφ/(N·s·rad−1) 0.01 kz/(N·s·rad−1) 0.01 kψ/(N·s·rad−1) 0.01 Ix/(N·s2·rad−2) 1.75 Iy/(N·s2·rad−2) 1.75 Iz/(N·s2·rad−2) 3.50 g/(m·s−2) 10.00 表 2 外部包围层无人机包含矢量
Table 2. Inclusion vector of UAV in external layer
lli(t) 包含矢量/m ll1(t) [1+0.353 5δ(t) 1.707−0.353 5δ(t) δ(t)]T ll2(t) [−1−0.353 5δ(t) 1.707−0.353 5δ(t) δ(t)]T ll3(t) [−1−0.353 5δ(t) −1.707+0.353 5δ(t) δ(t)]T ll4(t) [1+0.353 5δ(t) −1.707+0.353 5δ(t) δ(t)]T ll5(t) [1.707−0.353 5δ(t) 1+0.353 5δ(t) −δ(t)]T ll6(t) [−1.707+0.353 5δ(t) 1+0.353 5δ(t) −δ(t)]T ll7(t) [−1.707+0.353 5δ(t) −1−0.353 5δ(t) −δ(t)]T ll8(t) [1.707−0.353 5δ(t) −1−0.353 5δ(t) −δ(t)]T 表 3 无人机各子系统所受外部扰动模型
Table 3. External perturbation to each UAV
dij(t) 扰动/(N·m) di1(t) 2sin(0.1πt) di2(t) 4(1−e−t) di3(t) 2 di4(t) 3(tanh(t)+e−t) di5(t) 5tanh(t) di6(t) 2cos(3t)+2sin(0.5πt) 表 4 控制器参数
Table 4. Controller parameters
参数 数值 参数 数值 T1 0.6 Tf 2.00 p1 0.9 p2 0.25 q1 1.9 q2 1.75 ll/lf 2.0 λ 2.00 k3 1.1 k4 1.00 k5 1.5 k71 1.5 k72 2.0 k8 1.00 k9 1.1 k10 1.00 m 0.3 α 5.00 γ 2.0 Δ 0.01 表 5 不同类型干扰下扰动观测效果
Table 5. Observation effect of different perturbations
扰动/(N·m) T/s dRMSE 本文方法 I&I方法 本文方法 I&I方法 5 0.06 0.61 0.368 8 0.590 1 5cost 0.05 ∞ 0.029 6 0.060 6 5−5coste0.05t 0.03 ∞ 0.011 3 0.117 7 表 6 观测器和控制器收敛效果对比
Table 6. Comparison of observer and controller convergence effects
控制效果 T/s dRMSE 本文方法 FTSMO方法 本文方法 FTSMO方法 分布式观测器 0.41 3.34 0.013 0.214 控制器 1.28 2.62 0.041 0.100 -
[1] NI J K, TANG Y, SHI P. A new fixed-time consensus tracking approach for second-order multiagent systems under directed communication topology[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(4): 2488-2500. doi: 10.1109/TSMC.2019.2915562 [2] HUA C C, YOU X, GUAN X P. Adaptive leader-following consensus for second-order time-varying nonlinear multiagent systems[J]. IEEE Transactions on Cybernetics, 2017, 47(6): 1532-1539. doi: 10.1109/TCYB.2016.2551220 [3] FANG H, WEI Y, CHEN J, et al. Flocking of second-order multiagent systems with connectivity preservation based on algebraic connectivity estimation[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 1067-1077. doi: 10.1109/TCYB.2016.2537307 [4] 王丹丹, 宗群, 张博渊, 等. 多无人机完全分布式有限时间编队控制[J]. 控制与决策, 2019, 34(12): 2656-2660.WANG D D, ZONG Q, ZHANG B Y, et al. Fully distributed finite-time formation control for multiple UAVs[J]. Control and Decision, 2019, 34(12): 2656-2660 (in Chinese). [5] 孙梦薇, 任璐, 孙长银, 等. 切换拓扑下动态事件触发多智能体系统固定时间一致性[J]. 自动化学报, 2023, 49(6): 1295-1305.SUN M W, REN L, SUN C Y, et al. Dynamic event-triggered fixed-time consensus control of multi-agent systems under switching topologies[J]. Acta Automatica Sinica, 2023, 49(6): 1295-1305 (in Chinese). [6] 魏志强, 翁哲鸣, 化永朝, 等. 切换拓扑下异构无人集群编队-合围跟踪控制[J]. 航空学报, 2023, 44(2): 252-267.WEI Z Q, WENG Z M, HUA Y Z, et al. Formation-containment tracking control for heterogeneous unmanned swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 252-267 (in Chinese). [7] LU Y Z, DONG X W, LI Q D, et al. Time-varying group formation-containment tracking control for general linear multiagent systems with unknown inputs[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 11055-11067. doi: 10.1109/TCYB.2021.3058086 [8] WANG X Y, LI S H, SHI P. Distributed finite-time containment control for double-integrator multiagent systems[J]. IEEE Transactions on Cybernetics, 2014, 44(9): 1518-1528. doi: 10.1109/TCYB.2013.2288980 [9] DONG X W, HUA Y Z, ZHOU Y, et al. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(1): 229-240. doi: 10.1109/TASE.2018.2792327 [10] LÜ H, HE W L, HAN Q L, et al. Finite-time containment control for nonlinear multi-agent systems with external disturbances[J]. Information Sciences, 2020, 512: 338-351. doi: 10.1016/j.ins.2019.05.049 [11] XIAO S Y, DONG J X. Distributed fault-tolerant containment control for nonlinear multi-agent systems under directed network topology via hierarchical approach[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(4): 806-816. doi: 10.1109/JAS.2021.1003928 [12] CAI Y L, ZHANG H G, WANG Y C, et al. Adaptive bipartite fixed-time time-varying output formation-containment tracking of heterogeneous linear multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4688-4698. doi: 10.1109/TNNLS.2021.3059763 [13] LI D Y, GE S S, HE W, et al. Distributed formation control of multiple euler–lagrange systems: a multilayer framework[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 3325-3332. doi: 10.1109/TCYB.2020.3022535 [14] XU Y, LI D Y, LUO D L, et al. Two-layer distributed hybrid affine formation control of networked Euler–Lagrange systems[J]. Journal of the Franklin Institute, 2019, 356(4): 2172-2197. doi: 10.1016/j.jfranklin.2018.11.029 [15] YU Z Q, LIU Z X, ZHANG Y M, et al. Distributed finite-time fault-tolerant containment control for multiple unmanned aerial vehicles[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(6): 2077-2091. doi: 10.1109/TNNLS.2019.2927887 [16] 刘伯健, 李爱军, 郭永, 等. 带有输入受限的无人机精确编队合围容错控制[J]. 航空学报, 2023, 44(9): 300-314.LIU B J, LI A J, GUO Y, et al. Fault-tolerant containment control for precise formation of UAVs with input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 300-314 (in Chinese). [17] 郑伟铭, 徐扬, 罗德林. 多四旋翼无人机系统分布式分层编队合围控制[J]. 北京航空航天大学学报, 2022, 48(6): 1091-1105.ZHENG W M, XU Y, LUO D L. Distributed hierarchical formation-containment control of multiple quadrotor UAV systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1091-1105 (in Chinese). [18] 孙小童, 郭戈, 张鹏飞. 非匹配扰动下的多智能体系统固定时间一致跟踪[J]. 自动化学报, 2021, 47(6): 1368-1376.SUN X T, GUO G, ZHANG P F. Fixed-time consensus tracking of multi-agent systems under unmatched disturbance[J]. Acta Automatica Sinica, 2021, 47(6): 1368-1376(in Chinese). [19] 王怡怡, 赵志良. 二自由度无人直升机的非线性自抗扰姿态控制[J]. 自动化学报, 2021, 47(8): 1951-1962.WANG Y Y, ZHAO Z L. Nonlinear active disturbance rejection attitude control of two-DOF unmanned helicopter[J]. Acta Automatica Sinica, 2021, 47(8): 1951-1962 (in Chinese). [20] 范云生, 陈欣宇, 赵永生, 等. 基于扩张状态观测器的四旋翼吊挂飞行系统非线性控制[J]. 自动化学报2023, 49(8): 1758-1770.FAN Y S, CHEN X Y, ZHAO Y S, et. al. Nonlinear control of quadrotor suspension system based on extended state observer[J]. Acta Automatica Sinica, 2023, 49(8): 1758−1770 (in Chinese). [21] 夏琳琳, 丛靖宇, 马文杰, 等. 基于浸入与不变原理的四旋翼姿态系统反步滑模控制[J]. 中国惯性技术学报, 2017, 25(5): 695-700.XIA L L, CONG J Y, MA W J, et al. Backstepping sliding mode control of quadrotor attitude system based on immersion and invariance[J]. Journal of Chinese Inertial Technology, 2017, 25(5): 695-700 (in Chinese). [22] 刘柏均, 侯明善, 余英. 带攻击角度约束的浸入与不变制导律[J]. 系统工程与电子技术, 2018, 40(5): 1085-1090. doi: 10.3969/j.issn.1001-506X.2018.05.19LIU B J, HOU M S, YU Y. Guidance law with impact angle constraints based on immersion and invariance[J]. Systems Engineering and Electronics, 2018, 40(5): 1085-1090 (in Chinese). doi: 10.3969/j.issn.1001-506X.2018.05.19 [23] LI X K, ZHANG H L, FAN W H, et al. Finite-time control for quadrotor based on composite barrier Lyapunov function with system state constraints and actuator faults[J]. Aerospace Science and Technology, 2021, 119: 107063. doi: 10.1016/j.ast.2021.107063 [24] ZUO Z Y, HAN Q L, NING B D, et al. An overview of recent advances in fixed-time cooperative control of multiagent systems[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2322-2334. doi: 10.1109/TII.2018.2817248 [25] KHANZADEH A, POURGHOLI M. Fixed-time leader–follower consensus tracking of second-order multi-agent systems with bounded input uncertainties using non-singular terminal sliding mode technique[J]. IET Control Theory & Applications, 2018, 12(5): 679-686. -