留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低信噪比S模式基带信号到达时间估计联合算法

宫峰勋 第五瑶光

宫峰勋,第五瑶光. 低信噪比S模式基带信号到达时间估计联合算法[J]. 北京航空航天大学学报,2025,51(2):380-388 doi: 10.13700/j.bh.1001-5965.2023.0027
引用本文: 宫峰勋,第五瑶光. 低信噪比S模式基带信号到达时间估计联合算法[J]. 北京航空航天大学学报,2025,51(2):380-388 doi: 10.13700/j.bh.1001-5965.2023.0027
GONG F X,DIWU Y G. Joint algorithm for time of arrival estimation of S-mode baseband signals with low SNR[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):380-388 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0027
Citation: GONG F X,DIWU Y G. Joint algorithm for time of arrival estimation of S-mode baseband signals with low SNR[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):380-388 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0027

低信噪比S模式基带信号到达时间估计联合算法

doi: 10.13700/j.bh.1001-5965.2023.0027
基金项目: 国家重点研发计划(2018YFC0809500)
详细信息
    通讯作者:

    E-mail:fxgong@cauc.edu.cn

  • 中图分类号: TN911

Joint algorithm for time of arrival estimation of S-mode baseband signals with low SNR

Funds: National Key Research and Development Program of China (2018YFC0809500)
More Information
  • 摘要:

    为提高接收低信噪比(SNR) S模式基带信号时广域多点定位(WAM)精确度,提出基于非相干积累的到达时间(TOA)估计联合算法。依托二次监视雷达(SSR)波束扫描驻留时间内目标应答信号具有的相关特性,提出并建立前导四脉冲匹配滤波、非相干积累的低信噪比基带脉冲信号上升沿估计方法,有效提升−15~5 dB范围低信噪比S模式基带信号TOA估计精确度。蒙特卡罗仿真结果显示,在−15~5 dB范围内的低信噪比S模式基带信号通过联合算法估计TOA的均方根误差(RMSE)优于25 ns。对于非理想S模式基带脉冲信号,信噪比低至−15 dB时,经过5个脉冲非相干积累的联合算法的TOA估计精确度达到22.245 ns,远优于WAM要求。

     

  • 图 1  S模式应答信号脉冲串

    Figure 1.  S-mode reply signal pulse string

    图 2  匹配滤波法TOA估计精确度

    Figure 2.  TOA estimation accuracy of matched filter

    图 3  $ {P_{QY}} $与基带信号信噪比的关系

    Figure 3.  Relationship between $ {P_{QY}} $ and SNR of baseband signal

    图 4  $ {P_{JQ}} $与累加信号数目${N_{{\text{ncoh}}}}$的关系

    Figure 4.  Relationship between $ {P_{JQ}} $ and accumulated signal number ${N_{{\text{ncoh}}}}$

    图 5  TOA估计联合算法流程框图

    Figure 5.  Flow chart of TOA estimation joint algorithm

    图 6  多个理想前导四脉冲信号匹配滤波非相干积累后的TOA估计精确度

    Figure 6.  TOA estimation accuracy of multiple ideal leading four-pulse signals after matched filter and non-coherent integration

    图 7  多个理想前导单脉冲信号匹配滤波非相干积累后的TOA估计精确度

    Figure 7.  TOA estimation accuracy of multiple ideal leading single-pulse signals after matched filter and non-coherent integration

    图 8  多个理想前导双脉冲信号匹配滤波非相干积累后的TOA估计精确度

    Figure 8.  TOA estimation accuracy of multiple ideal leading double-pulse signals aftermatched filter and non-coherent integration

    图 9  多个非理想前导四脉冲信号匹配滤波非相干积累后的TOA估计精确度

    Figure 9.  TOA estimation accuracy of multiple non-ideal leading four-pulse signals after matched filter and non-coherent integration

    图 10  联合算法所需最少积累信号数目

    Figure 10.  Minimum number of accumulated signals required for joint algorithm

    表  1  −15 dB时达到25 ns以下估计精度所需运行时间

    Table  1.   Required operating time to achieve estimation accuracy below 25 ns at −15 dB

    采样频率/MHz 最少积累信号数目 RMSE/ns 运行时间/µs
    理想前导
    四脉冲信号
    非理想前导
    四脉冲信号
    理想前导
    四脉冲信号
    非理想前导
    四脉冲信号
    理想前导
    四脉冲信号
    非理想前导
    四脉冲信号
    40 8 13 24.475 24.140 190.0 277.0
    53 6 9 23.640 24.811 232.0 363.9
    80 4 6 23.433 23.563 228.1 333.1
    100 3 5 24.182 22.245 211.3 241.2
    下载: 导出CSV
  • [1] TORRIERI D J. Adaptive thresholding systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, 13(3): 273-280.
    [2] TORRIERI D J. Arrival time estimation by adaptive thresholding[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(2): 178-184.
    [3] GALATI G, GASBARRA M, LEONARDI M. Multilateration algorithms for time of arrival estimation and target location in airports[C]//Proceedings of the 1st European Radar Conference. Piscataway: IEEE Press, 2004: 293-296.
    [4] GALATI G, STUDER F A. Maximum likelihood azimuth estimation applied to SSR/IFF systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(1): 27-43. doi: 10.1109/7.53411
    [5] 王洪, 金尔文, 刘昌忠, 等. 多点定位TOA精确估计及同步误差校正算法[J]. 系统工程与电子技术, 2013, 35(4): 835-839. doi: 10.3969/j.issn.1001-506X.2013.04.26

    WANG H, JIN E W, LIU C Z, et al. Accurate estimation of TOA and calibration of synchronization error for multilateration[J]. Systems Engineering and Electronics, 2013, 35(4): 835-839(in Chinese). doi: 10.3969/j.issn.1001-506X.2013.04.26
    [6] 胡国兵, 刘渝. 基于倒序相关累加的信号到达时间盲估计[J]. 南京航空航天大学学报, 2009, 41(3): 391-396.

    HU G B, LIU Y. Blind arrival time estimation of signals based on correlation and reversed accumulation[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(3): 391-396(in Chinese).
    [7] 胡国兵, 刘渝, 邓振淼. 基于Haar小波变换的信号到达时间估计[J]. 系统工程与电子技术, 2009, 31(7): 1615-1619. doi: 10.3321/j.issn:1001-506X.2009.07.020

    HU G B, LIU Y, DENG Z M. Arrival time estimation of signals based on Haar wavelets transform[J]. Systems Engineering and Electronics, 2009, 31(7): 1615-1619(in Chinese). doi: 10.3321/j.issn:1001-506X.2009.07.020
    [8] 宫峰勋, 李孟然. 多点定位系统到达时间估计算法的性能分析[J]. 激光与光电子学进展, 2022, 59(13): 1304002.

    GONG F X, LI M R. Performance analysis of arrival time estimation algorithm for multilateration system[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1304002(in Chinese).
    [9] 李平, 李建峰, 翟会, 等. 基于级联滑窗的脉冲到达时间估计方法[J]. 信号处理, 2021, 37(11): 2054-2060.

    LI P, LI J F, ZHAI H, et al. A time of arrival estimation method for pulse based on cascaded sliding window[J]. Journal of Signal Processing, 2021, 37(11): 2054-2060(in Chinese).
    [10] COSTA T M R. Analysis of aircraft accuracy location in aeronautical multilateration systems[D]. Lisbon: University of Lisbon, 2017: 78-79.
    [11] YOO S H, OH J H, KOH Y M, et al. Performance analysis of MLAT system receiver for aircraft flight control system[J]. Journal of Positioning, Navigation, and Timing, 2016, 5(1): 29-36. doi: 10.11003/JPNT.2016.5.1.029
    [12] 宫峰勋, 曹雅茹. S模式前导脉冲过零点提取与TOA时间戳精确度研究[J]. 南京航空航天大学学报, 2020, 52(5): 701-707.

    GONG F X, CAO Y R. Zero-crossing extraction of S-mode preamble pulse and TOA timestamp accuracy[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(5): 701-707(in Chinese).
    [13] 苏志刚, 刘通, 郝敬堂, 等. 低信噪比1090ES报头的恒虚警检测方法[J]. 信号处理, 2020, 36(7): 1048-1054.

    SU Z G, LIU T, HAO J T, et al. Constant false alarm rate detection method for 1090ES preamble with lower SNR[J]. Journal of Signal Processing, 2020, 36(7): 1048-1054(in Chinese).
    [14] 王微. 西宁机场THALES二次雷达干扰及假目标的抑制实现[D]. 兰州: 兰州大学, 2018.

    WANG W. THALES secondary radar interference and false target suppression in Xining Airport[D]. Lanzhou: Lanzhou University, 2018(in Chinese) .
    [15] 王亚涛. 空管二次雷达S模式询问机目标捕获与监视实现方案[J]. 电讯技术, 2010, 50(7): 71-75. doi: 10.3969/j.issn.1001-893x.2010.07.015

    WANG Y T. Target capture and surveillance method for mode S air traffic control SSR interrogator[J]. Telecommunication Engineering, 2010, 50(7): 71-75(in Chinese). doi: 10.3969/j.issn.1001-893x.2010.07.015
    [16] RICHARDS M A. 雷达信号处理基础[M]. 邢孟道, 王彤, 李真芳, 译. 北京: 电子工业出版社, 2017: 53-56.

    RICHARDS M A. Fundamentals of radar signal processing[M]. XING M D, WANG T, LI Z F, translated. Beijing: Electronics Industry Press, 2017: 53-56(in Chinese).
    [17] REN P, WANG J X, YANG S S, et al. A prototype of high-sensitivity noncoherent receiver forADS-B signals[J]. International Journal of Satellite Communications and Networking, 2020, 38(4): 341-354. doi: 10.1002/sat.1338
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  58
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 录用日期:  2023-07-28
  • 网络出版日期:  2023-09-04
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答