留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于航位推算的车载组合导航系统NHC杆臂估计算法

邓成剑 陈起金 张提升 牛小骥

邓成剑,陈起金,张提升,等. 基于航位推算的车载组合导航系统NHC杆臂估计算法[J]. 北京航空航天大学学报,2025,51(2):668-675 doi: 10.13700/j.bh.1001-5965.2023.0035
引用本文: 邓成剑,陈起金,张提升,等. 基于航位推算的车载组合导航系统NHC杆臂估计算法[J]. 北京航空航天大学学报,2025,51(2):668-675 doi: 10.13700/j.bh.1001-5965.2023.0035
DENG C J,CHEN Q J,ZHANG T S,et al. NHC lever arm estimation algorithm for vehicle-integrated navigation systems based on dead reckoning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):668-675 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0035
Citation: DENG C J,CHEN Q J,ZHANG T S,et al. NHC lever arm estimation algorithm for vehicle-integrated navigation systems based on dead reckoning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):668-675 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0035

基于航位推算的车载组合导航系统NHC杆臂估计算法

doi: 10.13700/j.bh.1001-5965.2023.0035
基金项目: 国家自然科学基金(41974024)
详细信息
    通讯作者:

    E-mail: chenqijin@whu.edu.cn

  • 中图分类号: V249.32

NHC lever arm estimation algorithm for vehicle-integrated navigation systems based on dead reckoning

Funds: National Natural Science Foundation of China (41974024)
More Information
  • 摘要:

    车辆运动的非完整性约束(NHC)可用作车载组合导航系统的速度观测信息,能够有效抑制惯性导航系统(INS)的误差累积。充分发挥NHC的约束作用需要准确估计和补偿IMU安装角和NHC杆臂。因此对NHC杆臂进行研究,通过三维航位推算(dead reckoning)及扩展卡尔曼滤波器,在没有里程计的情况下,同时估计IMU安装角和NHC杆臂。实验结果表明,本算法能够同时准确估计高精度惯导和低精度MEMS惯导的安装角和NHC杆臂,安装角估计误差小于0.1°,使用估计的NHC杆臂投影点比IMU中心更符合NHC约束条件,能够明显提高NHC约束的辅助效果,提升车载组合导航系统的性能。

     

  • 图 1  IMU安装角和NHC杆臂示意图

    Figure 1.  IMU stagger angle and NHC lever arm

    图 2  IMU安装角和NHC杆臂估计算法框图

    Figure 2.  Block diagram of IMU stagger angle and NHC lever arm estimation algorithm

    图 3  车载实验的设备安装图

    Figure 3.  Equipment installation of vehicle test

    图 4  测试轨迹图

    Figure 4.  Test trajectory

    图 5  NHC杆臂估计曲线(来自实验A数据)

    Figure 5.  NHC lever arm estimation curve(from the data in experiment A)

    图 6  IMU安装角估计曲线(来自实验A数据)

    Figure 6.  Estimation curve of IMU stagger angle(from the data in experiment A)

    图 7  参考系统(高精度惯导POS620)的y轴速度(来自实验A数据)

    Figure 7.  y-axis velocity of reference system (high-precision INS POS620) (from the data in experiment A)

    图 8  参考系统(高精度惯导POS620)的z轴速度曲线(来自实验A数据)

    Figure 8.  z-axis velocity of reference system (high-precision INS POS620) (from the data in experiment A)

    图 9  MEMS IMU(ADIS16465)姿态误差曲线(来自实验A数据)

    Figure 9.  Attitude error curve of MEMS IMU (ADIS16465)(from the data in experiment A)

    图 10  MEMS IMU(HG101)姿态误差曲线(来自实验A数据)

    Figure 10.  Attitude error curve of MEMS IMU (HG101)(from the data in experiment A)

    表  1  IMU基本参数

    Table  1.   Basic parameters of IMU

    IMU型号 角度随机游走/
    ((°)·h−1/2)
    速度随机游走/
    ((m·s−1)·h−1/2)
    陀螺零偏/
    ((°)·h−1)
    加表零偏/
    (m·s−2)
    PO620 0.03 0.003 0.01 0.000 15
    ADIS16465 0.10 0.100 50.00 0.000 50
    HG101 0.30 0.200 15.00 0.002 00
    下载: 导出CSV

    表  2  NHC杆臂估计值

    Table  2.   Statistics of estimated values of NHC lever arm m

    实验组别 x轴分量 y轴分量
    POS620 ADIS16465 HG101 POS620 ADIS16465 HG101
    A 0.412 0.560 0.777 0.000 0.015 −0.016
    B 0.396 0.556 0.774 −0.002 0.017 −0.018
    C 0.416 0.573 0.793 0.020 0.022 −0.013
    下载: 导出CSV

    表  3  NHC杆臂X轴分量估计值横向对比结果

    Table  3.   Lateral comparison results of estimated values of X-axis component of NHC lever arm m

    实验组别 x轴分量
    POS620 ADIS16465 HG101
    A 0.412 0.375 0.397
    B 0.396 0.371 0.394
    C 0.416 0.388 0.413
    下载: 导出CSV

    表  4  GNSS中断时的位置漂移误差统计

    Table  4.   Position drift error statistics during GNSS outages

    IMU型号 方向 位置发散误差统计值/m
    方案1 方案2 方案3
    北向 0.525 0.468 0.395
    POS620 东向 0.825 0.821 0.607
    高程 0.425 0.262 0.266
    北向 6.902 5.266 3.464
    ADIS16465 东向 10.079 6.205 3.503
    高程 1.364 0.621 0.454
    北向 11.922 8.145 3.991
    HG101 东向 16.476 3.857 3.095
    高程 3.730 0.614 0.387
    下载: 导出CSV
  • [1] KIM S B, BAZIN J C, LEE H K, et al. Ground vehicle navigation in harsh urban conditions by integrating inertial navigation system, global positioning system, odometer and vision data[J]. IET Radar, Sonar & Navigation, 2011, 5(8): 814.
    [2] ILYAS M, YANG Y C, QIAN Q S, et al. Low-cost IMU/odometer/GPS integrated navigation aided with two antennae heading measurement for land vehicle application[C]// 2013 25th Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2013: 4521-4526.
    [3] DISSANAYAKE G, SUKKARIEH S, NEBOT E, et al. The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications[J]. IEEE Transactions on Robotics and Automation, 2001, 17(5): 731-747. doi: 10.1109/70.964672
    [4] NIU X J, LI Y, ZHANG Q, et al. Observability analysis of non-holonomic constraints for land-vehicle navigation systems[J]. Journal of Global Positioning Systems, 2012, 11(1): 80-88. doi: 10.5081/jgps.11.1.80
    [5] ZHU K, GUO X, JIANG C H, et al. MIMU/odometer fusion with state constraints for vehicle positioning during BeiDou signal outage: testing and results[J]. Sensors, 2020, 20(8): 2302. doi: 10.3390/s20082302
    [6] WU Y X, GOODALL C, EL-SHEIMY N. Self-calibration for IMU/Odometer land navigation: simulation and test results[C]// Proceedings of the 2010 International Technical Meeting of the Institute of Navigation. San Diego : the Institute of Navigation, 2010: 839-849.
    [7] GAO K, REN S Q, CHEN X J, et al. High precision SINS/OD dead reckoning algorithm considering lever arm effect[C]// IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2017: 3731-3735.
    [8] 牛小骥, 丁龙阳, 旷俭, 等. 基于MEMS IMU和运动约束的共享单车定位算法[J]. 中国惯性技术学报, 2021, 29(3): 300-306.

    NIU X J, DING L Y, KUANG J, et al. A MEMS IMU and motion constraint-based positioning algorithm for shared bicycles[J]. Journal of Chinese Inertial Technology, 2021, 29(3): 300-306 (in Chinese).
    [9] ZHANG Q, HU Y Q, NIU X J. Required lever arm accuracy of non-holonomic constraint for land vehicle navigation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8305-8316. doi: 10.1109/TVT.2020.2995076
    [10] WU Y X, WU M P, HU X P, et al. Self-calibration for land navigation using inertial sensors and odometer: observability analysis[C]// AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: AIAA 2009-5970.
    [11] LI L L, SUN H X, YANG S, et al. Online calibration and compensation of total odometer error in an integrated system[J]. Measurement, 2018, 123: 69-79. doi: 10.1016/j.measurement.2018.03.044
    [12] CHEN Q J, ZHANG Q, NIU X J. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS integrated system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6503-6515. doi: 10.1109/TITS.2020.2993052
    [13] LIU Z B, WANG L J, WEN F, et al. IMU/vehicle calibration and integrated localization for autonomous driving[C]// 2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021: 4013-4019.
    [14] HWANG Y, JEONG Y, KWEON I S, et al. Online misalignment estimation of strapdown navigation for land vehicle under dynamic condition[J]. International Journal of Automotive Technology, 2021, 22(6): 1723-1733. doi: 10.1007/s12239-021-0148-6
    [15] ZHANG Q, HU Y Q, LI S S, et al. Mounting parameter estimation from velocity vector observations for land vehicle navigation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 4234-4244. doi: 10.1109/TIE.2021.3075883
    [16] WEN Z Y, YANG G L, CAI Q Z. An improved SINS/NHC integrated navigation algorithm based on Ackermann turning geometry[J]. Measurement, 2022, 192: 110859. doi: 10.1016/j.measurement.2022.110859
    [17] YAN M, WANG Z C, ZHANG J. Online calibration of installation errors of SINS/OD integrated navigation system based on improved NHC[J]. IEEE Sensors Journal, 2022, 22(13): 12602-12612. doi: 10.1109/JSEN.2022.3170707
    [18] ROGERS R M. Applied mathematics in integrated navigation systems[M]. third ed. Reston, Virginia: AIAA, Inc. , 2007.
    [19] TITTERTON D, WESTON J L, WESTON J. Strapdown inertial navigation technology[M]. 2nd ed. London: the Institution of Engineering and Technology, 2004: 17.
    [20] YANG Z H, LI Z K, LIU Z, et al. Improved robust and adaptive filter based on non-holonomic constraints for RTK/INS integrated navigation[J]. Measurement Science and Technology, 2021, 32(10): 105110. doi: 10.1088/1361-6501/ac0370
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  840
  • HTML全文浏览量:  175
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-06
  • 录用日期:  2023-04-29
  • 网络出版日期:  2023-05-18
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答