NHC lever arm estimation algorithm for vehicle-integrated navigation systems based on dead reckoning
-
摘要:
车辆运动的非完整性约束(NHC)可用作车载组合导航系统的速度观测信息,能够有效抑制惯性导航系统(INS)的误差累积。充分发挥NHC的约束作用需要准确估计和补偿IMU安装角和NHC杆臂。因此对NHC杆臂进行研究,通过三维航位推算(dead reckoning)及扩展卡尔曼滤波器,在没有里程计的情况下,同时估计IMU安装角和NHC杆臂。实验结果表明,本算法能够同时准确估计高精度惯导和低精度MEMS惯导的安装角和NHC杆臂,安装角估计误差小于0.1°,使用估计的NHC杆臂投影点比IMU中心更符合NHC约束条件,能够明显提高NHC约束的辅助效果,提升车载组合导航系统的性能。
Abstract:The non-holonomic constraint (NHC) of vehicle motion can be used as the velocity observation information for the vehicle-integrated navigation system, which can effectively suppress the error accumulation of the inertial navigation system (INS). To fully exert the constraint function of NHC, it is significant to accurately estimate and compensate for the inertial measurement unit (IMU) stagger angle and NHC lever arm. This paper researched the NHC lever arm and estimated the IMU stagger angle and NHC lever arm simultaneously by three-dimensional dead reckoning and Kalman filter without an odometer. The results show that the proposed algorithm can accurately estimate the stagger angle and NHC lever arm of the high-precision INS and low-precision micro-electro-mechanical system (MEMS) INS, and the stagger angle error is less than 0.1°. The estimated NHC lever arm projection point is more in line with the NHC constraint condition than the IMU center, and it can significantly improve the auxiliary effect of NHC constraint and strengthen the performance of the vehicle-integrated navigation system.
-
表 1 IMU基本参数
Table 1. Basic parameters of IMU
IMU型号 角度随机游走/
((°)·h−1/2)速度随机游走/
((m·s−1)·h−1/2)陀螺零偏/
((°)·h−1)加表零偏/
(m·s−2)PO620 0.03 0.003 0.01 0.000 15 ADIS16465 0.10 0.100 50.00 0.000 50 HG101 0.30 0.200 15.00 0.002 00 表 2 NHC杆臂估计值
Table 2. Statistics of estimated values of NHC lever arm
m 实验组别 x轴分量 y轴分量 POS620 ADIS16465 HG101 POS620 ADIS16465 HG101 A 0.412 0.560 0.777 0.000 0.015 −0.016 B 0.396 0.556 0.774 −0.002 0.017 −0.018 C 0.416 0.573 0.793 0.020 0.022 −0.013 表 3 NHC杆臂X轴分量估计值横向对比结果
Table 3. Lateral comparison results of estimated values of X-axis component of NHC lever arm
m 实验组别 x轴分量 POS620 ADIS16465 HG101 A 0.412 0.375 0.397 B 0.396 0.371 0.394 C 0.416 0.388 0.413 表 4 GNSS中断时的位置漂移误差统计
Table 4. Position drift error statistics during GNSS outages
IMU型号 方向 位置发散误差统计值/m 方案1 方案2 方案3 北向 0.525 0.468 0.395 POS620 东向 0.825 0.821 0.607 高程 0.425 0.262 0.266 北向 6.902 5.266 3.464 ADIS16465 东向 10.079 6.205 3.503 高程 1.364 0.621 0.454 北向 11.922 8.145 3.991 HG101 东向 16.476 3.857 3.095 高程 3.730 0.614 0.387 -
[1] KIM S B, BAZIN J C, LEE H K, et al. Ground vehicle navigation in harsh urban conditions by integrating inertial navigation system, global positioning system, odometer and vision data[J]. IET Radar, Sonar & Navigation, 2011, 5(8): 814. [2] ILYAS M, YANG Y C, QIAN Q S, et al. Low-cost IMU/odometer/GPS integrated navigation aided with two antennae heading measurement for land vehicle application[C]// 2013 25th Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2013: 4521-4526. [3] DISSANAYAKE G, SUKKARIEH S, NEBOT E, et al. The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications[J]. IEEE Transactions on Robotics and Automation, 2001, 17(5): 731-747. doi: 10.1109/70.964672 [4] NIU X J, LI Y, ZHANG Q, et al. Observability analysis of non-holonomic constraints for land-vehicle navigation systems[J]. Journal of Global Positioning Systems, 2012, 11(1): 80-88. doi: 10.5081/jgps.11.1.80 [5] ZHU K, GUO X, JIANG C H, et al. MIMU/odometer fusion with state constraints for vehicle positioning during BeiDou signal outage: testing and results[J]. Sensors, 2020, 20(8): 2302. doi: 10.3390/s20082302 [6] WU Y X, GOODALL C, EL-SHEIMY N. Self-calibration for IMU/Odometer land navigation: simulation and test results[C]// Proceedings of the 2010 International Technical Meeting of the Institute of Navigation. San Diego : the Institute of Navigation, 2010: 839-849. [7] GAO K, REN S Q, CHEN X J, et al. High precision SINS/OD dead reckoning algorithm considering lever arm effect[C]// IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2017: 3731-3735. [8] 牛小骥, 丁龙阳, 旷俭, 等. 基于MEMS IMU和运动约束的共享单车定位算法[J]. 中国惯性技术学报, 2021, 29(3): 300-306.NIU X J, DING L Y, KUANG J, et al. A MEMS IMU and motion constraint-based positioning algorithm for shared bicycles[J]. Journal of Chinese Inertial Technology, 2021, 29(3): 300-306 (in Chinese). [9] ZHANG Q, HU Y Q, NIU X J. Required lever arm accuracy of non-holonomic constraint for land vehicle navigation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8305-8316. doi: 10.1109/TVT.2020.2995076 [10] WU Y X, WU M P, HU X P, et al. Self-calibration for land navigation using inertial sensors and odometer: observability analysis[C]// AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: AIAA 2009-5970. [11] LI L L, SUN H X, YANG S, et al. Online calibration and compensation of total odometer error in an integrated system[J]. Measurement, 2018, 123: 69-79. doi: 10.1016/j.measurement.2018.03.044 [12] CHEN Q J, ZHANG Q, NIU X J. Estimate the pitch and heading mounting angles of the IMU for land vehicular GNSS/INS integrated system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6503-6515. doi: 10.1109/TITS.2020.2993052 [13] LIU Z B, WANG L J, WEN F, et al. IMU/vehicle calibration and integrated localization for autonomous driving[C]// 2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021: 4013-4019. [14] HWANG Y, JEONG Y, KWEON I S, et al. Online misalignment estimation of strapdown navigation for land vehicle under dynamic condition[J]. International Journal of Automotive Technology, 2021, 22(6): 1723-1733. doi: 10.1007/s12239-021-0148-6 [15] ZHANG Q, HU Y Q, LI S S, et al. Mounting parameter estimation from velocity vector observations for land vehicle navigation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 4234-4244. doi: 10.1109/TIE.2021.3075883 [16] WEN Z Y, YANG G L, CAI Q Z. An improved SINS/NHC integrated navigation algorithm based on Ackermann turning geometry[J]. Measurement, 2022, 192: 110859. doi: 10.1016/j.measurement.2022.110859 [17] YAN M, WANG Z C, ZHANG J. Online calibration of installation errors of SINS/OD integrated navigation system based on improved NHC[J]. IEEE Sensors Journal, 2022, 22(13): 12602-12612. doi: 10.1109/JSEN.2022.3170707 [18] ROGERS R M. Applied mathematics in integrated navigation systems[M]. third ed. Reston, Virginia: AIAA, Inc. , 2007. [19] TITTERTON D, WESTON J L, WESTON J. Strapdown inertial navigation technology[M]. 2nd ed. London: the Institution of Engineering and Technology, 2004: 17. [20] YANG Z H, LI Z K, LIU Z, et al. Improved robust and adaptive filter based on non-holonomic constraints for RTK/INS integrated navigation[J]. Measurement Science and Technology, 2021, 32(10): 105110. doi: 10.1088/1361-6501/ac0370 -