Optimization of key parameters of electromagnetic coil launching based on uniform design experimentation
-
摘要:
电磁线圈发射的出口速度及发射效率会受到发射系统结构参数和电路参数等关键参数的影响。为获得更高的出口速度和发射效率,根据电路原理和动力学原理建立电磁线圈垂直发射模型,并利用有限元仿真软件Ansoft Maxwell进行动态仿真。利用均匀设计试验法安排数次试验,研究了5级线圈发射系统的触发位置等关键参数对发射效率的影响。对仿真结果进行逐步回归分析,提出利用模拟退火算法对触发位置进行优化的方法,得到最佳触发控制策略。对所得触发位置进行仿真,发射效率达到56.27%,验证了所提优化方法的有效性,为大质量发射技术的优化提供参考。
Abstract:An electromagnetic coil launcher's muzzle velocity and launch efficiency are determined by critical system characteristics like circuit and structural design. To obtain higher muzzle velocity and launch efficiency, this article establishes an electromagnetic coil vertical launch model according to the circuit principle and dynamics principle and uses the finite element simulation software Ansoft Maxwell for dynamic simulation of the proposed model. Several experiments are conducted using the uniform experimental design method to examine the influence of key parameters, such as the trigger positions of the five-stage coil launcher system, on the launch efficiency. The simulated annealing algorithm is used to propose a method of optimizing the trigger sites and produce the ideal trigger sequence after the simulation results are assessed using the stepwise regression approach. Finally, the simulation is carried out based on the trigger positions obtained by the simulated annealing, and the launch efficiency of 56.27% is achieved. This result verifies the effectiveness of the proposed optimization method and provides a valuable reference for the optimization of high-mass launch technology in the future.
-
参数 数值 参数 数值 驱动线圈内径/mm 830 电容值/mF 8 驱动线圈长度/mm 180 充电电压/kV 4.7 驱动线圈匝数 230 电容器电阻/mΩ 0.5 驱动线圈厚度/mm 100 电容器电感/μH 0.2 级间距/mm 20 回路电阻/mΩ 5 弹丸外径/mm 810 回路电感/μH 0.4 弹丸长度/mm 180 续流二极管电阻/mΩ 1 弹丸厚度/mm 80 续流二极管电感/μH 1 弹丸质量/kg 350 表 2 5因素各水平数下均匀设计表的偏差[18]
Table 2. Deviation of uniform design table under each level of five factors[18]
水平数 偏差 水平数 偏差 11 0.4286 15 0.0072 12 0.2272 16 0.2070 13 0.3814 17 0 14 0 表 3 均匀设计试验因素水平
Table 3. Factor level table for uniform design experimentation
水平数 ${x_1}$/mm $ {x_2} $/mm ${x_3}$/mm ${x_4}$/mm ${x_5}$/mm 1 95 0 0 0 0 2 102.5 5.5 12.5 12.5 12.5 3 115 11.25 25 25 25 4 127.5 16.75 37.35 37.5 37.5 5 140 22.5 50 50 50 6 152.5 28 62.5 62.5 62.5 7 165 33.75 75 75 75 8 177.5 39.25 87.5 87.5 87.5 9 190 45 100 100 100 10 202.5 50.5 112.5 112.5 112.5 11 215 56.25 125 125 125 12 227.5 61.75 137.5 137.5 137.5 13 240 67.5 150 150 150 14 252.5 73 162.5 162.5 162.5 15 265 78.75 175 175 175 16 277.5 84.25 187.5 187.5 187.5 17 290 90 200 200 200 表 4 均匀设计试验安排
Table 4. Uniform design experiment schedule
试验编号 ${x_1}$/mm $ {x_2} $/mm ${x_3}$/mm ${x_4}$/mm ${x_5}$/mm 1 95 16.5 112.5 162.5 175 2 102.5 39.25 25 125 150 3 115 61.75 150 87.5 125 4 127.5 84.25 62.5 50 100 5 140 11.25 187.5 12.5 75 6 152.5 33.75 100 187.5 50 7 165 56.25 12.5 150 25 8 177.5 78.75 137.5 112.5 0 9 190 5.5 50 75 187.5 10 202.5 28 175 37.5 162.5 11 215 50.5 87.5 0 137.5 12 227.5 73 0 175 112.5 13 240 0 125 137.5 87.5 14 252.5 22.5 37.5 100 62.5 15 265 45 162.5 62.5 37.5 16 277.5 67.5 75 25 12.5 17 290 90 200 200 200 表 5 均匀设计试验结果
Table 5. Uniform design experiment results
试验
编号最大发射
速度/(m·s−1)试验
编号最大发射
速度/(m·s−1)试验
编号最大发射
速度/(m·s−1)1 3.52 7 36.51 13 34.61 2 9.94 8 33.82 14 36.20 3 36.6 9 36.33 15 31.86 4 36.3 10 34.86 16 31.93 5 36.63 11 34.97 17 22.10 6 37.19 12 35.66 表 6 回归系数值
Table 6. Value of regression coefficients
${b_0}$ ${b_1}$ ${b_2}$ ${b_3}$ ${b_4}$ ${b_5}$ ${b_6}$ ${b_7}$ ${b_8}$ ${b_9}$ ${b_{10}}$ − 46.6028 0.8001 − 0.0845 0.0163 0.0107 0.1392 0.0002 0.0019 0.0001 − 0.0020 0.0009 表 7 优化后的触发位置
Table 7. Optimized trigger positions
mm x1 x2 x3 x4 x5 155 185 247 312 379 -
[1] 王莹, 肖峰. 电炮原理[M]. 北京: 国防工业出版社, 1992: 96-97.WANG Y, XIAO F. Principle of electric gun[M]. Beijing: National Defense Industry Press, 1992: 96-97(in Chinese). [2] 马伟明, 肖飞, 聂世雄. 电磁发射系统中电力电子技术的应用与发展[J]. 电工技术学报, 2016, 31(19): 1-10. doi: 10.3969/j.issn.1000-6753.2016.19.001MA W M, XIAO F, NIE S X. Applications and development of power electronics in electromagnetic launch system[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 1-10(in Chinese). doi: 10.3969/j.issn.1000-6753.2016.19.001 [3] 张涛, 国伟, 苏子舟, 等. 基于磁场方向变化的同步感应线圈发射器效率提升分析[J]. 电工技术学报, 2021, 36(3): 517-524.ZHANG T, GUO W, SU Z Z, et al. Efficiency improvement analysis of synchronous induction coil transmitter based on the change of magnetic field direction[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 517-524(in Chinese). [4] 刘文彪, 曹延杰, 张媛, 等. 基于蚁群算法的同步感应线圈炮结构参数优化[J]. 兵工学报, 2011, 32(11): 1416-1422.LIU W B, CAO Y J, ZHANG Y, et al. Structural parameter optimization of synchronous induction coil gun based on ant colony algorithm[J]. Acta Armamentarii, 2011, 32(11): 1416-1422(in Chinese). [5] LIU W B, CAO Y J, ZHANG Y, et al. Parameters optimization of synchronous induction coilgun based on ant colony algorithm[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 100-104. doi: 10.1109/TPS.2010.2076315 [6] 郭赟, 鲁军勇, 关晓存, 等. 基于遗传算法的同步感应线圈发射装置参数优化[J]. 强激光与粒子束, 2014, 26(11): 115008. doi: 10.3788/HPLPB20142611.115008GUO Y, LU J Y, GUAN X C, et al. Design optimization of synchronous induction coil electromagnetic launcher based on genetic algorithm[J]. High Power Laser and Particle Beams, 2014, 26(11): 115008(in Chinese). doi: 10.3788/HPLPB20142611.115008 [7] NIU X B, LIU K P, ZHANG Y D, et al. Multiobjective optimization of multistage synchronous induction coilgun based on NSGA-II[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1622-1628. doi: 10.1109/TPS.2017.2706522 [8] NIU X B, LI W Q, FENG J Y. Nonparametric modeling and parameter optimization of multistage synchronous induction coilgun[J]. IEEE Transactions on Plasma Science, 2019, 47(7): 3246-3255. doi: 10.1109/TPS.2019.2918157 [9] 关晓存, 鲁军勇. 多级感应线圈炮最优发射控制策略[J]. 强激光与粒子束, 2014, 26(5): 055002. doi: 10.3788/HPLPB20142605.55002GUAN X C, LU J Y. Optimum launch control strategy of multi-level induction coilgun[J]. High Power Laser and Particle Beams, 2014, 26(5): 055002(in Chinese). doi: 10.3788/HPLPB20142605.55002 [10] 向红军, 李治源, 袁建生. 考虑电枢速度的多级感应线圈炮最佳触发位置[J]. 电机与控制学报, 2012, 16(1): 7-11. doi: 10.3969/j.issn.1007-449X.2012.01.002XIANG H J, LI Z Y, YUAN J S. Optimal trigger position of multi-stage inductive coilgun with armature velocity[J]. Electric Machines and Control, 2012, 16(1): 7-11(in Chinese). doi: 10.3969/j.issn.1007-449X.2012.01.002 [11] 李三群, 张朝伟, 邓启斌, 等. 多级同步感应线圈炮的动态特性仿真[J]. 高电压技术, 2009, 35(12): 3065-3070.LI S Q, ZHANG C W, DENG Q B, et al. Simulation of dynamic characteristic of multi-stage synchronous induction coilgun[J]. High Voltage Engineering, 2009, 35(12): 3065-3070(in Chinese). [12] 徐琅, 李卫东, 王秀凤, 等. 预载荷下板料激光弯曲成形的工艺参数分析[J]. 北京航空航天大学学报, 2017, 43(6): 1149-1154.XU L, LI W D, WANG X F, et al. Analysis on process parameters of laser bending of preloaded metal plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1149-1154(in Chinese). [13] 王钊, 曹延杰, 王旻, 等. 三级电磁线圈垂直发射器工作过程仿真[J]. 高压电器, 2014, 50(1): 14-19.WANG Z, CAO Y J, WANG M, et al. Simulation of working process of three-stage electromagnetic coil vertical launcher[J]. High Voltage Apparatus, 2014, 50(1): 14-19(in Chinese). [14] 王振春, 谭懿, 刘福才. 电磁线圈发射器研究现状和发展 [C]//中国自动化大会论文集. 上海: 中国自动化协会, 2020: 828- 833.WANG Z C, TAN Y, LIU F C. Research status and development of electromagnetic coil transmitter [C]//Proceedings of the China Automation Conference. Shanghai: China Association of Automation, 2020: 828- 833(in Chinese). [15] 王钊, 金洪波, 邹本贵, 等. 电磁线圈发射器垂直发射过程建模与仿真[J]. 海军航空工程学院学报, 2013, 28(3): 272-276.WANG Z, JIN H B, ZOU B G, et al. Modeling and simulation of electromagnetic coil launcher for vertical launching process[J]. Journal of Naval Aeronautical and Astronautical University, 2013, 28(3): 272-276(in Chinese). [16] JIN Y S, KIM Y B, KIM J S, et al. A 4.8-MJ pulsed-power system for electromagnetic launcher experiment[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3369-3373. doi: 10.1109/TPS.2015.2403860 [17] 蔡智超, 李毅博. 基于Halbach阵列电磁超声纵波换能器优化设计[J]. 电工技术学报, 2021, 36(21): 4408-4417.CAI Z C, LI Y B. Optimum design of electromagnetic acoustic longitudinal wave transducer based on halbach array[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4408-4417(in Chinese). [18] 方开泰. 均匀设计与均匀设计表[M]. 北京: 科学出版社, 1994: 35-46.FANG K T. Uniform design and uniform design table[M]. Beijing: Science Press, 1994 : 35-46(in Chinese). [19] YANG D, LIU Z X, SHU T, et al. An improved genetic algorithm for multiobjective optimization of helical coil electromagnetic launchers[J]. IEEE Transactions on Plasma Science, 2018, 46(1): 127-133. doi: 10.1109/TPS.2017.2773639 [20] 朱庄生, 张萌. 面向InSAR的空气扰动影响机翼挠曲变形建模[J]. 北京航空航天大学学报, 2020, 46(1): 38-50.ZHU Z S, ZHANG M. Air disturbance affecting wing deflection deformation modeling for InSAR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 38-50(in Chinese). [21] 张长勇, 刘佳瑜. 基于混合遗传算法的多箱型集装箱装载问题分析[J]. 北京航空航天大学学报, 2022, 48(5): 747-755.ZHANG C Y, LIU J Y. Multi-box container loading problem based on hybrid genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 747-755(in Chinese). [22] 郭庆, 惠晓滨, 张贾奎, 等. 多模函数优化的改进花朵授粉算法[J]. 北京航空航天大学学报, 2018, 44(4): 828-840.GUO Q, HUI X B, ZHANG J K, et al. Improved flower pollination algorithm for multimodal function optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 828-840(in Chinese). -