Guidance and control method for dynamic net-recovery of UAV and the flight test verification
-
摘要:
针对舰载固定翼无人机(UAV)动态精确回收过程中的制导控制技术开展研究,提出基于分段策略的舰载无人机精确回收引导方法,完成了动态撞网回收控制系统方案设计与集成测试。通过数值迭代方法预测触网时间实现回收航线的在线规划,在回收中段采用基于引导点的非线性制导算法对航线进行精确跟踪,在回收末段基于经典比例导引及纵横解耦策略设计了三维空间末制导律,实现了针对动基座回收的撞网点精确控制。通过系统仿真和飞行试验证明了分段制导策略与各阶段算法的有效性,结果表明:回收航线规划方法简单有效、适应性强,制导控制算法对于航线的跟踪偏差小于0.5 m,高度控制的稳态精度优于0.5 m,动态撞网回收的末端精度优于0.8 m,各阶段的制导控制精度满足无人机动态撞网需求,所提方法适于工程应用。
Abstract:This study focuses on the guidance and control technology for shipborne fixed-wing unmanned aerial vehicle (UAV) during dynamic recovery. The guidance system for precise recovery based on a segmented control strategy is proposed. The scheme design and integration test of the system for dynamic net-recovery are completed. Online recovery route planning is achieved by predicting contact time through a numerical iteration method, while a nonlinear guidance algorithm based on guidance points is employed for accurate mid-phase tracking. Based on the classical proportional guidance and the longitudinal/lateral decoupling strategy, a three-dimensional terminal guidance law is designed to achieve accurate control of the impact point in the terminal guidance phase of dynamic recovery. The effectiveness of the segmented guidance strategy with the algorithm in each phase is proved through simulation and flight tests. The results show that the recovery route planning method is simple, effective and adaptable. The tracking deviation of the guidance algorithm for the route is less than 0.5 m, and the steady-state accuracy of altitude control is better than 0.5 m. The terminal guidance accuracy of UAV in the dynamic net-recovery test is better than 0.8 m. The guidance and control accuracy throughout all phases meets UAV net-recovery requirements, making the proposed method suitable for engineering applications.
-
[1] 梁天骄, 陈晓明, 杨朝旭, 等. 舰载无人机滑行轨迹控制方法[J]. 北京航空航天大学学报, 2021, 47(2): 289-296.LIANG T J, CHEN X M, YANG Z X, et al. Trajectory control method for unmanned carrier aircraft taxiing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 289-296(in Chinese). [2] GAUTAM A, SUJIT P B, SARIPALLI S. A survey of autonomous landing techniques for UAVs[C]//Proceedings of the International Conference on Unmanned Aircraft Systems. Piscataway: IEEE Press, 2014: 1210-1218. [3] 谭立国, 杨小艳, 宋申民, 等. 面向小型舰船的固定翼无人机海上回收方法综述[J]. 哈尔滨工业大学学报, 2019, 51(10): 1-10. doi: 10.11918/j.issn.0367-6234.201903057TAN L G, YANG X Y, SONG S M, et al. An overview of marine recovery methods of UAV for small ships[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 1-10(in Chinese). doi: 10.11918/j.issn.0367-6234.201903057 [4] GRYTE K, SOLLIE M L, JOHANSEN T A. Control system architecture for automatic recovery of fixed-wing unmanned aerial vehicles in a moving arrest system[J]. Journal of Intelligent & Robotic Systems, 2021, 103(4): 73. [5] 沈林成, 孔维玮, 牛轶峰. 无人机自主降落地基/舰基引导方法综述[J]. 北京航空航天大学学报, 2021, 47(2): 187-196.SHEN L C, KONG W W, NIU Y F. Ground-and ship-based guidance approaches for autonomous landing of UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 187-196(in Chinese). [6] ROBERGE V, TARBOUCHI M, LABONTE G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J]. IEEE Transactions on Industrial Informatics, 2012, 9(1): 132-141. [7] YOON S, KIM H J, KIM Y. Spiral landing trajectory and pursuit guidance law design for vision-based net-recovery UAV[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009. [8] SHI H Y, LU Y F, HOU Z X, et al. 3D dubins net-recovery path planning for fixed wing UAV[C]//Proceedings of the 30th Chinese Control and Decision Conference. Piscataway: IEEE Press, 2018: 604-610. [9] DUAN H B, CHEN L, ZENG Z G. Automatic landing for carrier-based aircraft under the conditions of deck motion and carrier airwake disturbances[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5276-5291. doi: 10.1109/TAES.2022.3168247 [10] QUAN L, HAN L X, ZHOU B Y, et al. Survey of UAV motion planning[J]. IET Cyber-Systems and Robotics, 2020, 2(1): 14-21. doi: 10.1049/iet-csr.2020.0004 [11] 刘宪飞, 王勇, 张代兵. 高抗扰高精度无人机着舰纵向飞行控制[J]. 北京航空航天大学学报, 2017, 43(9): 1891-1899.LIU X F, WANG Y, ZHANG D B. High-immunity high-precision longitudinal flight control for UAV’s carrier landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1891-1899(in Chinese). [12] WANG S, ZHEN Z Y, JIANG J, et al. Flight tests of autopilot integrated with fault-tolerant control of a small fixed-wing UAV[J]. Mathematical Problems in Engineering, 2016, 2016: 2141482. [13] YOU D I, JUNG Y D, CHO S W, et al. A guidance and control law design for precision automatic take-off and landing of fixed-wing UAVs[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2012. [14] MISRA G, GAO T Y, BAI X L. Modeling and simulation of UAV carrier landings[C]//Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019. [15] STEPHAN J, PFEIFLE O, NOTTER S, et al. Precise tracking of extended three-dimensional dubins paths for fixed-wing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(12): 2399-2405. doi: 10.2514/1.G005240 [16] SINGH M, JETLEY P, SINGHAL A, et al. State-dependent Riccati equation-based UAV path following guidance for shipborne net recovery[J]. Unmanned Systems, 2024, 12(4): 749-761. doi: 10.1142/S2301385024500183 [17] 甄子洋. 舰载无人机自主着舰回收制导与控制研究进展[J]. 自动化学报, 2019, 45(4): 669-681.ZHEN Z Y. Research development in autonomous carrier-landing/ship-recovery guidance and control of unmanned aerial vehicles[J]. Acta Automatica Sinica, 2019, 45(4): 669-681(in Chinese). [18] 刘长秀, 陈欣, 李春涛. 一种舰载无人机动态撞网回收控制器设计[J]. 电光与控制, 2016, 23(7): 64-69.LIU C X, CHEN X, LI C T. Controller design of dynamic net recovery for UAV[J]. Electronics Optics & Control, 2016, 23(7): 64-69(in Chinese). [19] CHEN J T, WANG Y. The guidance and control of small net-recovery UAV[C]//Proceedings of the Seventh International Conference on Computational Intelligence and Security. Piscataway: IEEE Press, 2011: 1566-1570. [20] PRAVITRA J, CLARKE J P B, JOHNSON E N. Landing a fixed-wing UAV on a moving platform: A pseudospectral optimal control approach[C]//Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019. [21] CHU L L, GU F, DU X T, et al. Aerodynamic configuration and control optimization for a novel horizontal-rope shipborne recovery fixed-wing UAV system[J]. Aerospace Science and Technology, 2023, 137: 108253. doi: 10.1016/j.ast.2023.108253 [22] SARIPALLI S, MONTGOMERY J F, SUKHATME G S. Vision based autonomous landing of an unmanned aerial vehicle[J]. Procedia Engineering, 2002, 38: 2250-2256. [23] YANG S W, SCHERER S A, ZELL A. An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle[J]. Journal of Intelligent & Robotic Systems, 2013, 69(1): 499-515. [24] HERISSÉ B, HAMEL T, MAHONY R, et al. Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow[J]. IEEE Transactions on Robotics, 2012, 28(1): 77-89. doi: 10.1109/TRO.2011.2163435 [25] HUH S, SHIM D H. A vision-based landing system for small unmanned aerial vehicles using an airbag[J]. Control Engineering Practice, 2010, 18(7): 812-823. doi: 10.1016/j.conengprac.2010.05.003 [26] KIM H J, KIM M, LIM H, et al. Fully autonomous vision-based net-recovery landing system for a fixed-wing UAV[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4): 1320-1333. doi: 10.1109/TMECH.2013.2247411 [27] 张怡, 张玉琢. 无人机撞网回收末制导系统的研究[J]. 西北工业大学学报, 1997, 15(4): 607-612.ZHANG Y, ZHANG Y Z. On recovering rpv with net system in China[J]. Journal of Northwestern Polytechnical University, 1997, 15(4): 607-612(in Chinese). [28] WANG K, SUN C, JIANG Y. Research on adaptive guidance technology of UAV ship landing system based on net recovery[J]. Procedia Engineering, 2015, 99: 1027-1034. doi: 10.1016/j.proeng.2014.12.637 [29] ZHANG D J, YANG N, WU L N, et al. A kind of moving net recovery technology for unmanned aerial vehicle[C]//Proceedings of the International Conference on Information and Communications Technologies, London: IET, 2015: 1-5. [30] 文桂林, 文登, 尹汉锋, 等. 某无人机撞网回收系统动力学仿真[J]. 湖南大学学报(自然科学版), 2011, 38(10): 34-38.WEN G L, WEN D, YIN H F, et al. Dynamic simulation of net-recovery system for unmanned aerial vehicle[J]. Journal of Hunan University (Natural Sciences), 2011, 38(10): 34-38(in Chinese). [31] 梁智韬, 王鹏, 侯中喜, 等. 一种无人机自主撞网回收航线的自动生成方法和装置: CN114049798A[P]. 2022-02-15.LIANG Z T, WANG P, HOU Z X, et al. A kind of automatic path generation method and device for UAV autonomous net-recovery: CN114049798A[P]. 2022-02-15(in Chinese). [32] 李樾, 陈清阳, 侯中喜. 自适应引导长度的无人机航迹跟踪方法[J]. 北京航空航天大学学报, 2017, 43(7): 1481-1490.LI Y, CHEN Q Y, HOU Z X. Path following method with adaptive guidance length for unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1481-1490(in Chinese). -