留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机动态撞网回收制导控制方法与飞行试验

王玉杰 陈清阳 高显忠 邓小龙 侯中喜

王玉杰,陈清阳,高显忠,等. 无人机动态撞网回收制导控制方法与飞行试验[J]. 北京航空航天大学学报,2025,51(2):487-497 doi: 10.13700/j.bh.1001-5965.2023.0043
引用本文: 王玉杰,陈清阳,高显忠,等. 无人机动态撞网回收制导控制方法与飞行试验[J]. 北京航空航天大学学报,2025,51(2):487-497 doi: 10.13700/j.bh.1001-5965.2023.0043
WANG Y J,CHEN Q Y,GAO X Z,et al. Guidance and control method for dynamic net-recovery of UAV and the flight test verification[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):487-497 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0043
Citation: WANG Y J,CHEN Q Y,GAO X Z,et al. Guidance and control method for dynamic net-recovery of UAV and the flight test verification[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):487-497 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0043

无人机动态撞网回收制导控制方法与飞行试验

doi: 10.13700/j.bh.1001-5965.2023.0043
基金项目: 国家自然科学基金(52172410,61903369)
详细信息
    通讯作者:

    E-mail:yjwang@nudt.edu.cn

  • 中图分类号: V249

Guidance and control method for dynamic net-recovery of UAV and the flight test verification

Funds: National Natural Science Foundation of China (52172410,61903369)
More Information
  • 摘要:

    针对舰载固定翼无人机(UAV)动态精确回收过程中的制导控制技术开展研究,提出基于分段策略的舰载无人机精确回收引导方法,完成了动态撞网回收控制系统方案设计与集成测试。通过数值迭代方法预测触网时间实现回收航线的在线规划,在回收中段采用基于引导点的非线性制导算法对航线进行精确跟踪,在回收末段基于经典比例导引及纵横解耦策略设计了三维空间末制导律,实现了针对动基座回收的撞网点精确控制。通过系统仿真和飞行试验证明了分段制导策略与各阶段算法的有效性,结果表明:回收航线规划方法简单有效、适应性强,制导控制算法对于航线的跟踪偏差小于0.5 m,高度控制的稳态精度优于0.5 m,动态撞网回收的末端精度优于0.8 m,各阶段的制导控制精度满足无人机动态撞网需求,所提方法适于工程应用。

     

  • 图 1  本文方法

    Figure 1.  The proposed method

    图 2  回收航线实时规划原理

    Figure 2.  Principle of recovery route planning online

    图 3  非线性制导方法几何示意图

    Figure 3.  Geometric sketch of nonlinear guidance method

    图 4  无人机制导控制框架

    Figure 4.  Architecture of UAV guidance and control

    图 5  撞网末端制导原理

    Figure 5.  Terminal guidance principle of net-recovery

    图 6  回收航线实时规划结果

    Figure 6.  Result of recovery route planning on line

    图 7  无人机动态撞网回收仿真结果

    Figure 7.  Simulation results of UAV dynamic net-recovery

    图 8  撞网偏差随末端导航精度的变化

    Figure 8.  Relationship between net-recovery deviation and navigation accuracy

    图 9  动态撞网回收试验系统组成

    Figure 9.  Composition of flight test system for dynamic net-recovery

    图 10  空中模拟撞网回收试验结果

    Figure 10.  Results of simulated aerial recovery test

    图 11  无人机手掷起飞与动态撞网回收实景

    Figure 11.  Live images of UAV hand launching and dynamic net-recovery

    图 12  无人机动态撞网回收飞行试验航迹

    Figure 12.  Flight trajectory of UAV in dynamic net-recovery test

    图 13  无人机制导控制精度分析

    Figure 13.  The analysis results of guidance and control accuracy

  • [1] 梁天骄, 陈晓明, 杨朝旭, 等. 舰载无人机滑行轨迹控制方法[J]. 北京航空航天大学学报, 2021, 47(2): 289-296.

    LIANG T J, CHEN X M, YANG Z X, et al. Trajectory control method for unmanned carrier aircraft taxiing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 289-296(in Chinese).
    [2] GAUTAM A, SUJIT P B, SARIPALLI S. A survey of autonomous landing techniques for UAVs[C]//Proceedings of the International Conference on Unmanned Aircraft Systems. Piscataway: IEEE Press, 2014: 1210-1218.
    [3] 谭立国, 杨小艳, 宋申民, 等. 面向小型舰船的固定翼无人机海上回收方法综述[J]. 哈尔滨工业大学学报, 2019, 51(10): 1-10. doi: 10.11918/j.issn.0367-6234.201903057

    TAN L G, YANG X Y, SONG S M, et al. An overview of marine recovery methods of UAV for small ships[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 1-10(in Chinese). doi: 10.11918/j.issn.0367-6234.201903057
    [4] GRYTE K, SOLLIE M L, JOHANSEN T A. Control system architecture for automatic recovery of fixed-wing unmanned aerial vehicles in a moving arrest system[J]. Journal of Intelligent & Robotic Systems, 2021, 103(4): 73.
    [5] 沈林成, 孔维玮, 牛轶峰. 无人机自主降落地基/舰基引导方法综述[J]. 北京航空航天大学学报, 2021, 47(2): 187-196.

    SHEN L C, KONG W W, NIU Y F. Ground-and ship-based guidance approaches for autonomous landing of UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 187-196(in Chinese).
    [6] ROBERGE V, TARBOUCHI M, LABONTE G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J]. IEEE Transactions on Industrial Informatics, 2012, 9(1): 132-141.
    [7] YOON S, KIM H J, KIM Y. Spiral landing trajectory and pursuit guidance law design for vision-based net-recovery UAV[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009.
    [8] SHI H Y, LU Y F, HOU Z X, et al. 3D dubins net-recovery path planning for fixed wing UAV[C]//Proceedings of the 30th Chinese Control and Decision Conference. Piscataway: IEEE Press, 2018: 604-610.
    [9] DUAN H B, CHEN L, ZENG Z G. Automatic landing for carrier-based aircraft under the conditions of deck motion and carrier airwake disturbances[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5276-5291. doi: 10.1109/TAES.2022.3168247
    [10] QUAN L, HAN L X, ZHOU B Y, et al. Survey of UAV motion planning[J]. IET Cyber-Systems and Robotics, 2020, 2(1): 14-21. doi: 10.1049/iet-csr.2020.0004
    [11] 刘宪飞, 王勇, 张代兵. 高抗扰高精度无人机着舰纵向飞行控制[J]. 北京航空航天大学学报, 2017, 43(9): 1891-1899.

    LIU X F, WANG Y, ZHANG D B. High-immunity high-precision longitudinal flight control for UAV’s carrier landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1891-1899(in Chinese).
    [12] WANG S, ZHEN Z Y, JIANG J, et al. Flight tests of autopilot integrated with fault-tolerant control of a small fixed-wing UAV[J]. Mathematical Problems in Engineering, 2016, 2016: 2141482.
    [13] YOU D I, JUNG Y D, CHO S W, et al. A guidance and control law design for precision automatic take-off and landing of fixed-wing UAVs[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2012.
    [14] MISRA G, GAO T Y, BAI X L. Modeling and simulation of UAV carrier landings[C]//Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
    [15] STEPHAN J, PFEIFLE O, NOTTER S, et al. Precise tracking of extended three-dimensional dubins paths for fixed-wing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(12): 2399-2405. doi: 10.2514/1.G005240
    [16] SINGH M, JETLEY P, SINGHAL A, et al. State-dependent Riccati equation-based UAV path following guidance for shipborne net recovery[J]. Unmanned Systems, 2024, 12(4): 749-761. doi: 10.1142/S2301385024500183
    [17] 甄子洋. 舰载无人机自主着舰回收制导与控制研究进展[J]. 自动化学报, 2019, 45(4): 669-681.

    ZHEN Z Y. Research development in autonomous carrier-landing/ship-recovery guidance and control of unmanned aerial vehicles[J]. Acta Automatica Sinica, 2019, 45(4): 669-681(in Chinese).
    [18] 刘长秀, 陈欣, 李春涛. 一种舰载无人机动态撞网回收控制器设计[J]. 电光与控制, 2016, 23(7): 64-69.

    LIU C X, CHEN X, LI C T. Controller design of dynamic net recovery for UAV[J]. Electronics Optics & Control, 2016, 23(7): 64-69(in Chinese).
    [19] CHEN J T, WANG Y. The guidance and control of small net-recovery UAV[C]//Proceedings of the Seventh International Conference on Computational Intelligence and Security. Piscataway: IEEE Press, 2011: 1566-1570.
    [20] PRAVITRA J, CLARKE J P B, JOHNSON E N. Landing a fixed-wing UAV on a moving platform: A pseudospectral optimal control approach[C]//Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
    [21] CHU L L, GU F, DU X T, et al. Aerodynamic configuration and control optimization for a novel horizontal-rope shipborne recovery fixed-wing UAV system[J]. Aerospace Science and Technology, 2023, 137: 108253. doi: 10.1016/j.ast.2023.108253
    [22] SARIPALLI S, MONTGOMERY J F, SUKHATME G S. Vision based autonomous landing of an unmanned aerial vehicle[J]. Procedia Engineering, 2002, 38: 2250-2256.
    [23] YANG S W, SCHERER S A, ZELL A. An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle[J]. Journal of Intelligent & Robotic Systems, 2013, 69(1): 499-515.
    [24] HERISSÉ B, HAMEL T, MAHONY R, et al. Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow[J]. IEEE Transactions on Robotics, 2012, 28(1): 77-89. doi: 10.1109/TRO.2011.2163435
    [25] HUH S, SHIM D H. A vision-based landing system for small unmanned aerial vehicles using an airbag[J]. Control Engineering Practice, 2010, 18(7): 812-823. doi: 10.1016/j.conengprac.2010.05.003
    [26] KIM H J, KIM M, LIM H, et al. Fully autonomous vision-based net-recovery landing system for a fixed-wing UAV[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4): 1320-1333. doi: 10.1109/TMECH.2013.2247411
    [27] 张怡, 张玉琢. 无人机撞网回收末制导系统的研究[J]. 西北工业大学学报, 1997, 15(4): 607-612.

    ZHANG Y, ZHANG Y Z. On recovering rpv with net system in China[J]. Journal of Northwestern Polytechnical University, 1997, 15(4): 607-612(in Chinese).
    [28] WANG K, SUN C, JIANG Y. Research on adaptive guidance technology of UAV ship landing system based on net recovery[J]. Procedia Engineering, 2015, 99: 1027-1034. doi: 10.1016/j.proeng.2014.12.637
    [29] ZHANG D J, YANG N, WU L N, et al. A kind of moving net recovery technology for unmanned aerial vehicle[C]//Proceedings of the International Conference on Information and Communications Technologies, London: IET, 2015: 1-5.
    [30] 文桂林, 文登, 尹汉锋, 等. 某无人机撞网回收系统动力学仿真[J]. 湖南大学学报(自然科学版), 2011, 38(10): 34-38.

    WEN G L, WEN D, YIN H F, et al. Dynamic simulation of net-recovery system for unmanned aerial vehicle[J]. Journal of Hunan University (Natural Sciences), 2011, 38(10): 34-38(in Chinese).
    [31] 梁智韬, 王鹏, 侯中喜, 等. 一种无人机自主撞网回收航线的自动生成方法和装置: CN114049798A[P]. 2022-02-15.

    LIANG Z T, WANG P, HOU Z X, et al. A kind of automatic path generation method and device for UAV autonomous net-recovery: CN114049798A[P]. 2022-02-15(in Chinese).
    [32] 李樾, 陈清阳, 侯中喜. 自适应引导长度的无人机航迹跟踪方法[J]. 北京航空航天大学学报, 2017, 43(7): 1481-1490.

    LI Y, CHEN Q Y, HOU Z X. Path following method with adaptive guidance length for unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1481-1490(in Chinese).
  • 加载中
图(13)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  88
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-09
  • 录用日期:  2023-06-09
  • 网络出版日期:  2023-07-03
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答