留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Buck-Boost转换器总剂量辐射效应分析与抗辐射加固设计方法

郭仲杰 卢沪 刘楠 吴龙胜

郭仲杰,卢沪,刘楠,等. Buck-Boost转换器总剂量辐射效应分析与抗辐射加固设计方法[J]. 北京航空航天大学学报,2025,51(2):389-396 doi: 10.13700/j.bh.1001-5965.2023.0050
引用本文: 郭仲杰,卢沪,刘楠,等. Buck-Boost转换器总剂量辐射效应分析与抗辐射加固设计方法[J]. 北京航空航天大学学报,2025,51(2):389-396 doi: 10.13700/j.bh.1001-5965.2023.0050
GUO Z J,LU H,LIU N,et al. Total ionizing dose effect analysis and radiation hardening design method of Buck-Boost converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):389-396 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0050
Citation: GUO Z J,LU H,LIU N,et al. Total ionizing dose effect analysis and radiation hardening design method of Buck-Boost converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):389-396 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0050

Buck-Boost转换器总剂量辐射效应分析与抗辐射加固设计方法

doi: 10.13700/j.bh.1001-5965.2023.0050
基金项目: 国家自然科学基金(62171367);陕西省重点研发计划(2021GY-060);陕西省创新能力支撑计划(2022TD-39);西安理工大学校企协同基金(252062109)
详细信息
    通讯作者:

    E-mail:zjguo@xaut.edu.cn

  • 中图分类号: TN492

Total ionizing dose effect analysis and radiation hardening design method of Buck-Boost converter

Funds: National Natural Science Foundation of China (62171367); Key Research and Development Program of Shaanxi (2021GY-060);Innovation Capability Support Program of Shaanxi (2022TD-39); School-Enterprise Cooperative Fund of Xi’an University of Technology (252062109)
More Information
  • 摘要:

    DC-DC转换器在总剂量辐射环境下会带来输出电压漂移、线性调整率与负载调整率下降等影响,使得电路的输出稳定性能变差。针对传统基于工艺与版图的抗总剂量辐射效应加固方法会带来成本较高、版图面积过大及普适性较差等问题,提出一种实时监测与自适应加固并行的抗总剂量辐射效应加固设计方法,可脱离工艺实现在电路级层面的总剂量辐射效应加固,提升了Buck-Boost转换器的抗总剂量辐射能力。基于0.18 μm BCD工艺对所提方法进行具体电路设计与物理实现验证,结果表明:在剂量值为2000 Gy (Si)的条件下,可将系统增益的下降率从19.26%补偿至6.65%,输出电压漂移率从0.0663%改善至0.0074%,负载调整率和线性调整率分别降低2.15%/A和0.0389%/V,为电路与系统级的抗总剂量辐射效应加固设计提供了一种新方法。

     

  • 图 1  总剂量辐射效应模拟方法

    Figure 1.  Total ionizing dose effect simulation method

    图 2  Buck-Boost系统环路结构

    Figure 2.  Loop structure of Buck-Boost system

    图 3  抗总剂量辐射效应加固电路

    Figure 3.  Total ionizing dose effect hardening circuit

    图 4  误差放大器加固设计电路

    Figure 4.  Error amplifier hardening design circuit

    图 5  整体版图照片

    Figure 5.  Overall layout photograph

    图 6  Buck-Boost转换器仿真输出波形

    Figure 6.  Simulation output waveform of Buck-Boost converter

    图 7  误差放大器增益、相位仿真输出波形

    Figure 7.  Gain-phase simulation output waveform of error amplifier

    图 8  误差放大器增益随电阻的变化

    Figure 8.  Variation of error amplifier gain with resistance

    图 9  误差放大器增益随补偿电流的变化

    Figure 9.  Variation of error amplifier gain with compensation current

    图 10  PVT下仿真结果

    Figure 10.  Simulation results under PVT

    图 11  Buck-Boost转换器验证方案

    Figure 11.  Buck-Boost converter verification scheme

    表  1  加固前后Buck-Boost转换器相关参数对比

    Table  1.   Comparison of Buck-Boost converter related parameters before and after hardening

    状态 输出电压/V 环路增益/dB 负载调整率/(%·A−1) 线性调整率/(%·V−1) 监测电压/V 负载电流/mA
    正常 2.70075 86.82 1 0.0046 1.2 600.2
    加固前 2.70254 70.1 3.27 0.044 600.566
    加固后 2.70055 81.05 1.12 0.0051 1.1894 600.122
    下载: 导出CSV

    表  2  不同方法对比结果

    Table  2.   Comparison results of different methods

    方法 工艺 版图面积/(mm×mm) 温度/℃ 输出电压漂移率/% 剂量值/(Gy(Si))
    本文 0.18 μm BCD 1.107×0.715 −40~85 0.0074 2000
    文献[4] 0.6 μm BiCMOS 3.91×1.37 −55~125 0.20 1500
    文献[14] 0.35 μm BCD 2.39×3.09 −55~125 0.13 3000
    文献[15] 0.35 μm CMOS 6×6 430
    文献[16] 0.35 μm BCD 3.34×2.3 −55~125 0.60 1000
    下载: 导出CSV
  • [1] 王利斌, 姚帅, 陆妩, 等. 双极电压比较器LM311电离总剂量与单粒子瞬态协同效应研究[J]. 电子学报, 2020, 48(8): 1635-1640.

    WANG L B, YAO S, LU W, et al. Synergistic effect of ionization total dose and single particle transient in bipolar voltage comparator LM311[J]. Acta Electronica Sinica, 2020, 48(8): 1635-1640(in Chinese).
    [2] 席善学, 陆妩, 郑齐文, 等. 体效应对超深亚微米SOI器件总剂量辐射效应的影响[J]. 电子学报, 2019, 47(5): 1065-1069.

    XI S X, LU W, ZHENG Q W, et al. The impact of body effect on TID of ultra deep sub micron SOI devices[J]. Acta Electronica Sinica, 2019, 47(5): 1065-1069(in Chinese).
    [3] CASSANI M V, SALOMONE L S, CARBONETTO S, et al. Experimental characterization and numerical modeling of total ionizing dose effects on field oxide MOS dosimeters[J]. Radiation Physics and Chemistry, 2021, 182: 109338. doi: 10.1016/j.radphyschem.2020.109338
    [4] FAN H, FENG L, CEN Y J, et al. Fast-transient radiation-hardened low-dropout voltage regulator for space applications[J]. IEEE Transactions on Nuclear Science, 2021, 68(5): 1094-1102.
    [5] LEE M, LEE N, KIM J, et al. Modeling and simulation-based layout optimization for tolerance to TID effect on n-MOSFET[J]. Electronics, 2021, 10(8): 887. doi: 10.3390/electronics10080887
    [6] TRIVEDI R, DEVASHRAYEE N M, MEHTA U S, et al. Development of radiation hardened by design (RHBD) primitive gates using 0.18 μm CMOS technology[C]//Proceedings of the 19th International Symposium on VLSI Design and Test. Piscataway: IEEE Press, 2015: 1-2.
    [7] LUO P, LING R X, ZHOU X, et al. A total ionizing dose detecting circuit based on off-state leakage current of NLDMOS in power IC[C]//Proceedings of the 31st International Symposium on Power Semiconductor Devices and ICs. Piscataway: IEEE Press, 2019: 119-122.
    [8] DEVAL Y, LAPUYADE H, RIVET F. Design of CMOS integrated circuits for radiation hardening and its application to space electronics[C]//Proceedings of the IEEE 13th International Conference on ASIC. Piscataway: IEEE Press, 2019: 1-4.
    [9] PAPADOPOULOU A, MAKRIS N, CHEVAS L, et al. Design of micropower operational transconductance amplifiers for high total ionizing dose effects[C]//Proceedings of the 8th International Conference on Modern Circuits and Systems Technologies. Piscataway: IEEE Press, 2019: 1-4.
    [10] KUMAR M, UBHI J S, BASRA S, et al. Total ionizing dose hardness analysis of transistors in commercial 180 nm CMOS technology[J]. Microelectronics Journal, 2021, 115: 105182. doi: 10.1016/j.mejo.2021.105182
    [11] LI T H, YANG Y T, LIU J, et al. Forward body bias for characterizing TID effect in CMOS integrated circuits[C]//Proceedings of the IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits. Piscataway: IEEE Press, 2017: 1-5.
    [12] LIU Z, YU H B, LIU Y B, et al. Design of a radiation hardened DC-DC boost converter[C]//Proceedings of the 2nd International Conference on Information Engineering and Computer Science. Piscataway: IEEE Press, 2010: 1-4.
    [13] GREIG T, STEFANOV K, HOLLAND A, et al. Total ionizing dose effects on I-V and noise characteristics of MOS transistors in a 0.18 μm CMOS image sensor process[C]//Proceedings of the 14th European Conference on Radiation and Its Effects on Components and Systems. Piscataway: IEEE Press, 2013: 1-5.
    [14] HUANG W, LIU H X, XU Q, et al. Design of 30 V high-voltage low-power radiation-tolerant analog switch IC[J]. IEEE Transactions on Nuclear Science, 2022, 69(4): 883-889.
    [15] CIARPI G, SAPONARA S. Inductorless DC/DC converter for aerospace applications with insulation features[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(9): 1659-1663.
    [16] 刘凡. 宇航用抗辐射关键模拟单元电路的研究与应用[D]. 成都: 电子科技大学, 2017.

    LIU F. Research and application of anti-radiation key analog unit circuit for aerospace[D]. Chengdu: University of Electronic Science and Technology of China, 2017(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  99
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 录用日期:  2023-04-12
  • 网络出版日期:  2023-04-21
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答