Total ionizing dose effect analysis and radiation hardening design method of Buck-Boost converter
-
摘要:
DC-DC转换器在总剂量辐射环境下会带来输出电压漂移、线性调整率与负载调整率下降等影响,使得电路的输出稳定性能变差。针对传统基于工艺与版图的抗总剂量辐射效应加固方法会带来成本较高、版图面积过大及普适性较差等问题,提出一种实时监测与自适应加固并行的抗总剂量辐射效应加固设计方法,可脱离工艺实现在电路级层面的总剂量辐射效应加固,提升了Buck-Boost转换器的抗总剂量辐射能力。基于0.18 μm BCD工艺对所提方法进行具体电路设计与物理实现验证,结果表明:在剂量值为
2000 Gy (Si)的条件下,可将系统增益的下降率从19.26%补偿至6.65%,输出电压漂移率从0.0663 %改善至0.0074 %,负载调整率和线性调整率分别降低2.15%/A和0.0389 %/V,为电路与系统级的抗总剂量辐射效应加固设计提供了一种新方法。-
关键词:
- 总剂量辐射效应 /
- 加固设计 /
- Buck-Boost转换器 /
- 误差放大器 /
- 实时监测
Abstract:DC-DC converter in the total dose radiation environment will mainly bring the output voltage drift, linear adjustment rate load adjustment rate decline and other effects so that the output stability performance of the circuit deteriorates. In order to address the issues with the conventional total ionizing dose effect hardening method that stem from process and layout, including high cost, large layout area, and poor universality, this paper suggests a total ionizing dose effect hardening design method with parallel monitoring and hardening. This method can accomplish total ionizing dose effect hardening at the circuit level without the need for a process. The anti-total dose capability of the Buck-Boost converter is improved. The circuit design and physical implementation of the proposed method are verified based on the 0.18 μm BCD process. According to the findings, with a dosage of
2000 Gy (Si), it is possible to enhance the output voltage shift rate from0.0663 % to0.0074 % and compensate the system gain drop rate from 19.26% to 6.65%. The load adjustment rate and linear adjustment rate are reduced by 2.15%/A and0.0389 %/V, respectively, which provides a new idea for the design of total ionizing dose effect hardening at the circuit and system level. -
表 1 加固前后Buck-Boost转换器相关参数对比
Table 1. Comparison of Buck-Boost converter related parameters before and after hardening
状态 输出电压/V 环路增益/dB 负载调整率/(%·A−1) 线性调整率/(%·V−1) 监测电压/V 负载电流/mA 正常 − 2.70075 86.82 1 0.0046 1.2 600.2 加固前 − 2.70254 70.1 3.27 0.044 600.566 加固后 − 2.70055 81.05 1.12 0.0051 1.1894 600.122 表 2 不同方法对比结果
Table 2. Comparison results of different methods
-
[1] 王利斌, 姚帅, 陆妩, 等. 双极电压比较器LM311电离总剂量与单粒子瞬态协同效应研究[J]. 电子学报, 2020, 48(8): 1635-1640.WANG L B, YAO S, LU W, et al. Synergistic effect of ionization total dose and single particle transient in bipolar voltage comparator LM311[J]. Acta Electronica Sinica, 2020, 48(8): 1635-1640(in Chinese). [2] 席善学, 陆妩, 郑齐文, 等. 体效应对超深亚微米SOI器件总剂量辐射效应的影响[J]. 电子学报, 2019, 47(5): 1065-1069.XI S X, LU W, ZHENG Q W, et al. The impact of body effect on TID of ultra deep sub micron SOI devices[J]. Acta Electronica Sinica, 2019, 47(5): 1065-1069(in Chinese). [3] CASSANI M V, SALOMONE L S, CARBONETTO S, et al. Experimental characterization and numerical modeling of total ionizing dose effects on field oxide MOS dosimeters[J]. Radiation Physics and Chemistry, 2021, 182: 109338. doi: 10.1016/j.radphyschem.2020.109338 [4] FAN H, FENG L, CEN Y J, et al. Fast-transient radiation-hardened low-dropout voltage regulator for space applications[J]. IEEE Transactions on Nuclear Science, 2021, 68(5): 1094-1102. [5] LEE M, LEE N, KIM J, et al. Modeling and simulation-based layout optimization for tolerance to TID effect on n-MOSFET[J]. Electronics, 2021, 10(8): 887. doi: 10.3390/electronics10080887 [6] TRIVEDI R, DEVASHRAYEE N M, MEHTA U S, et al. Development of radiation hardened by design (RHBD) primitive gates using 0.18 μm CMOS technology[C]//Proceedings of the 19th International Symposium on VLSI Design and Test. Piscataway: IEEE Press, 2015: 1-2. [7] LUO P, LING R X, ZHOU X, et al. A total ionizing dose detecting circuit based on off-state leakage current of NLDMOS in power IC[C]//Proceedings of the 31st International Symposium on Power Semiconductor Devices and ICs. Piscataway: IEEE Press, 2019: 119-122. [8] DEVAL Y, LAPUYADE H, RIVET F. Design of CMOS integrated circuits for radiation hardening and its application to space electronics[C]//Proceedings of the IEEE 13th International Conference on ASIC. Piscataway: IEEE Press, 2019: 1-4. [9] PAPADOPOULOU A, MAKRIS N, CHEVAS L, et al. Design of micropower operational transconductance amplifiers for high total ionizing dose effects[C]//Proceedings of the 8th International Conference on Modern Circuits and Systems Technologies. Piscataway: IEEE Press, 2019: 1-4. [10] KUMAR M, UBHI J S, BASRA S, et al. Total ionizing dose hardness analysis of transistors in commercial 180 nm CMOS technology[J]. Microelectronics Journal, 2021, 115: 105182. doi: 10.1016/j.mejo.2021.105182 [11] LI T H, YANG Y T, LIU J, et al. Forward body bias for characterizing TID effect in CMOS integrated circuits[C]//Proceedings of the IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits. Piscataway: IEEE Press, 2017: 1-5. [12] LIU Z, YU H B, LIU Y B, et al. Design of a radiation hardened DC-DC boost converter[C]//Proceedings of the 2nd International Conference on Information Engineering and Computer Science. Piscataway: IEEE Press, 2010: 1-4. [13] GREIG T, STEFANOV K, HOLLAND A, et al. Total ionizing dose effects on I-V and noise characteristics of MOS transistors in a 0.18 μm CMOS image sensor process[C]//Proceedings of the 14th European Conference on Radiation and Its Effects on Components and Systems. Piscataway: IEEE Press, 2013: 1-5. [14] HUANG W, LIU H X, XU Q, et al. Design of 30 V high-voltage low-power radiation-tolerant analog switch IC[J]. IEEE Transactions on Nuclear Science, 2022, 69(4): 883-889. [15] CIARPI G, SAPONARA S. Inductorless DC/DC converter for aerospace applications with insulation features[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(9): 1659-1663. [16] 刘凡. 宇航用抗辐射关键模拟单元电路的研究与应用[D]. 成都: 电子科技大学, 2017.LIU F. Research and application of anti-radiation key analog unit circuit for aerospace[D]. Chengdu: University of Electronic Science and Technology of China, 2017(in Chinese). -