-
摘要:
减速器是典型的滞回系统,滞回影响传动性能。现有减速器滞回模型会忽略几何误差的滞回特性,而将其当成常量,导致模型不能完整反映其滞回特性。为此,探究了减速器滞回的产生机理,从理论上分析了几何误差、摩擦和弹性变形对减速器滞回的影响,建立了考虑几何误差滞回特性的减速器滞回模型。在模型的实际应用中,发现了减速器回差的动态性,并推导了动态回差公式。通过实验研究,验证了几何误差对减速器滞回的影响,证实了滞回模型的有效性;通过改变回差测试时的加载速率,验证了回差的动态性;发现材质不同,受加载速率的影响不同,加载速率每增加0.05 (N·m)/s,模数为0.22 mm的小型金属和塑料齿轮减速器的回差测试结果分别下降约3′和10′。
Abstract:A reducer is a typical hysteresis system, and the hysteresis affects its transmission performance. The existing hysteresis models of reducers usually ignore the hysteresis characteristics of geometric errors and treat them as constants, which results in the inability of these models to fully reflect the hysteresis characteristics of reducers. In order to better understand the mechanism behind gear reducer hysteresis, this paper theoretically analyzes the effects of friction, elastic deformation, and geometric errors on the phenomenon. Additionally, it develops a new model for gear reducer hysteresis that takes geometric error hysteresis characteristics into account. The model's practical application reveals the dynamic characteristics of the lost motion in the reducer, and a dynamic lost motion formula is deduced. Experimental research verifies the influence of geometric errors on the reducer hysteresis and confirms the effectiveness of the hysteresis model. By changing the loading rate during the lost motion test, the dynamic characteristics of the lost motion are verified. It was found that different materials have different effects on the loading rate. For every 0.05 (N·m)/s increase in the loading rate, the lost motion test results of the small metal gear reducer and the small plastic gear reducer with a modulus of 0.22 mm decrease by about 3′ and 10′, respectively.
-
Key words:
- reducer /
- hysteresis model /
- lost motion /
- dynamic characteristics /
- loading rate
-
表 1 减速器参数
Table 1. The parameters of reducer
减速器 材料 传动比 额定转速/(r·min−1) 峰值转速/(r·min−1) 额定力矩/(N·m) 几何回差/(′) 工作效率/% 减速器1 Fe、Cu、Ni 1296 6.0 23.0 0.1 180.0 56 减速器2 POM 1296 6.0 23.0 0.1 190.0 58 表 3 减速器1的几何回差测试结果
Table 3. Experiment results of geometric lost motion of reducer 1
加载速率/
(N·m·s−1)δg/(′) 平均值/(′) 0° 180° 360° 0.01 88.32 88.97 87.29 88.19 0.05 88.68 88.46 88.77 88.64 0.1 87.96 87.69 88.54 88.06 表 2 减速器1的总回差测试结果
Table 2. Experiment results of total lost motion of reducer 1
加载速率/
(N·m·s−1)δ/(′) 平均值/(′) 0° 180° 360° 0.01 261.23 260.32 260.28 260.61 0.05 258.72 257.29 258.91 258.31 0.1 255.89 255.27 254.37 255.18 表 4 减速器1的弹性回差测试结果
Table 4. Experiment results of elastic lost motion of reducer 1
加载速率/
(N·m·s−1)δe/(′) 平均值/(′) 0° 180° 360° 0.01 172.91 171.35 172.99 172.42 0.05 170.04 168.83 170.14 169.67 0.1 167.93 167.58 165.83 167.11 表 6 减速器2的几何回差测试结果
Table 6. Experiment results of geometric lost motion of reducer 2
加载速率/
(N·m·s−1)δg/(′) 平均值/(′) 0° 180° 360° 0.01 261.25 260.42 260.61 260.76 0.05 260.31 260.39 260.82 260.51 0.1 259.91 260.30 260.77 260.33 表 5 减速器2的总回差测试结果
Table 5. Experiment results of total lost motion of reducer 2
加载速率/
(N·m·s−1)δ/(′) 平均值/(′) 0° 180° 360° 0.01 620.86 619.37 621.33 620.52 0.05 607.23 608.11 608.92 608.09 0.1 587.47 589.23 588.26 588.32 表 7 减速器2的弹性回差测试结果
Table 7. Experiment results of elastic lost motion of reducer 2
加载速率/
(N·m·s−1)δe/(′) 平均值/(′) 0° 180° 360° 0.01 359.61 358.95 360.72 359.76 0.05 346.92 347.72 348.10 347.58 0.1 327.56 328.93 327.49 327.99 -
[1] SPREKELS J, BROKATE M . Hysteresis and phase transitions[M]. Berlin: Springer, 1996: 28-52. [2] EWING J A. Experimental researches in magnetism[J]. Philosophical Transactions of the Royal Society of London, 1885, 176: 523-640. doi: 10.1098/rstl.1885.0010 [3] 徐航. 精密减速器回差测量与评价体系研究[D]. 北京: 北京工业大学, 2018: 27-44.XU H. Research on measurement and evaluation system of precision reducer lost motion[D]. Beijing: Beijing University of Technology, 2018: 27-44(in Chinese) . [4] XU H, SHI Z Y, YU B, et al. Optimal measurement speed and its determination method in the transmission precision evaluation of precision reducers[J]. Applied Sciences, 2019, 9(10): 2146. doi: 10.3390/app9102146 [5] 程慧明, 石照耀, 于渤, 等. 服务机器人小型关节回差测量的实验研究[J]. 仪器仪表学报, 2020, 41(5): 48-57.CHENG H M, SHI Z Y, YU B, et al. Experiment research on hysteresis measurement of the small-size joint of service robot[J]. Chinese Journal of Scientific Instrument, 2020, 41(5): 48-57(in Chinese). [6] TAGHIRAD H D, BÉLANGER P R. Modeling and parameter identification of harmonic drive systems[J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(4): 439-444. doi: 10.1115/1.2801484 [7] DHAOUADI R, GHORBEL F H, GANDHI P S. A new dynamic model of hysteresis in harmonic drives[J]. IEEE Transactions on Industrial Electronics, 2003, 50(6): 1165-1171. doi: 10.1109/TIE.2003.819661 [8] SUSHANT M D. Dynamic hysteresis modeling and applications [D]. Huston: Rice University, 2004: 28-46. [9] 郑杰基, 陈凌宇, 范大鹏, 等. 双电机精密传动机构消隙方法研究[J]. 中国机械工程, 2022, 33(22): 2684-2692. doi: 10.3969/j.issn.1004-132X.2022.22.005ZHENG J J, CHEN L Y, FAN D P, et al. Research on backlash elimination method of dual-motor precision transmission mechanisms[J]. China Mechanical Engineering, 2022, 33(22): 2684-2692(in Chinese). doi: 10.3969/j.issn.1004-132X.2022.22.005 [10] 赵国峰, 樊卫华, 陈庆伟, 等. 齿隙非线性研究进展[J]. 兵工学报, 2006, 27(6): 1072-1080. doi: 10.3321/j.issn:1000-1093.2006.06.027ZHAO G F, FAN W H, CHEN Q W, et al. A survey on backlash nonlinearity[J]. Acta Armamentarii, 2006, 27(6): 1072-1080(in Chinese). doi: 10.3321/j.issn:1000-1093.2006.06.027 [11] ZHANG X, JIANG G D, ZOU C, et al. Modeling of compliance and hysteresis with erasure property in harmonic drive by active loading[C]//Proceedings of the 2017 IEEE International Conference on Cybernetics and Intelligent Systems and IEEE Conference on Robotics, Automation and Mechatronics. Piscataway: IEEE Press, 2017: 439-445. [12] 房建成, 陈萌, 李海涛. 磁悬浮控制力矩陀螺框架系统谐波减速器的迟滞建模[J]. 光学 精密工程, 2014, 22(11): 2950-2958. doi: 10.3788/OPE.20142211.2950FANG J C, CHEN M, LI H T. Hysteresis modeling for harmonic drive in DGMSCMG gimbal system[J]. Optics and Precision Engineering, 2014, 22(11): 2950-2958(in Chinese). doi: 10.3788/OPE.20142211.2950 [13] TAO G, KOKOTOVIC P V. Continuous-time adaptive control of systems with unknown backlash[J]. IEEE Transactions on Automatic Control, 1995, 40(6): 1083-1087. doi: 10.1109/9.388689 [14] MORRIS K A. What is hysteresis?[J]. Applied Mechanics Reviews, 2011, 64(5): 050801. doi: 10.1115/1.4007112 [15] 石照耀, 程慧明, 朱逸文, 等. 服务机器人小型关节综合性能测试机[J]. 光学 精密工程, 2020, 28(8): 1707-1714.SHI Z Y, CHENG H M, ZHU Y W, et al. Testing machine for small-size electro-mechanical actuator used in robots[J]. Optics and Precision Engineering, 2020, 28(8): 1707-1714(in Chinese). [16] 石照耀, 徐航, 韩方旭, 等. 精密减速器回差测量的现状与趋势[J]. 光学 精密工程, 2018, 26(9): 2150-2158. doi: 10.3788/OPE.20182609.2150SHI Z Y, XU H, HAN F X, et al. Current status and trends in precision reducer lost motion measurement[J]. Optics and Precision Engineering, 2018, 26(9): 2150-2158(in Chinese). doi: 10.3788/OPE.20182609.2150 [17] 石照耀, 徐航, 林家春, 等. 精密减速器回差测量与评价体系研究[J]. 仪器仪表学报, 2018, 39(6): 56-63.SHI Z Y, XU H, LIN J C, et al. Research on measurement and evaluation system of precision reducer lost motion[J]. Chinese Journal of Scientific Instrument, 2018, 39(6): 56-63(in Chinese). [18] PARLITZ U, HORNSTEIN A, ENGSTER D, et al. Identification of pre-sliding friction dynamics[J]. Chaos, 2004, 14(2): 420-430. [19] 国家市场监督管理总局, 国家标准化管理委员会. 精密减速器回差测试与评价方法: GB/T 40731—2021[S]. 北京: 中国标准出版社, 2021.State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Method of test and evaluation for lost motion of precision reducer: GB/T 40731—2021[S]. Beijing: Standards Press of China, 2021(in Chinese). -