留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

减速器滞回模型及其应用

程慧明 石照耀

程慧明,石照耀. 减速器滞回模型及其应用[J]. 北京航空航天大学学报,2025,51(2):563-572 doi: 10.13700/j.bh.1001-5965.2023.0055
引用本文: 程慧明,石照耀. 减速器滞回模型及其应用[J]. 北京航空航天大学学报,2025,51(2):563-572 doi: 10.13700/j.bh.1001-5965.2023.0055
CHENG H M,SHI Z Y. Hysteresis model of reducer and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):563-572 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0055
Citation: CHENG H M,SHI Z Y. Hysteresis model of reducer and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):563-572 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0055

减速器滞回模型及其应用

doi: 10.13700/j.bh.1001-5965.2023.0055
基金项目: 深圳市技术攻关重点项目(JSGG20220831104001002)
详细信息
    通讯作者:

    E-mail:shizhaoyao@bjut.edu.cn

  • 中图分类号: TH89

Hysteresis model of reducer and its application

Funds: Shenzhen Techmical Key Projects (JSGG20220831104001002)
More Information
  • 摘要:

    减速器是典型的滞回系统,滞回影响传动性能。现有减速器滞回模型会忽略几何误差的滞回特性,而将其当成常量,导致模型不能完整反映其滞回特性。为此,探究了减速器滞回的产生机理,从理论上分析了几何误差、摩擦和弹性变形对减速器滞回的影响,建立了考虑几何误差滞回特性的减速器滞回模型。在模型的实际应用中,发现了减速器回差的动态性,并推导了动态回差公式。通过实验研究,验证了几何误差对减速器滞回的影响,证实了滞回模型的有效性;通过改变回差测试时的加载速率,验证了回差的动态性;发现材质不同,受加载速率的影响不同,加载速率每增加0.05 (N·m)/s,模数为0.22 mm的小型金属和塑料齿轮减速器的回差测试结果分别下降约3′和10′。

     

  • 图 1  减速器的输入-输出关系

    Figure 1.  Input and output relationship of reducer

    图 2  减速器滞回模型结构

    Figure 2.  Hysteresis model structure of reducer

    图 3  考虑几何误差的减速器滞回模型

    Figure 3.  Hysteresis model of reducer including geometric error

    图 4  输入转角与输出转角的关系

    Figure 4.  Relationship of input angle and output angle

    图 5  几何误差的滞回曲线

    Figure 5.  Hysteresis curve of geometric error

    图 6  摩擦产生的滞回曲线

    Figure 6.  Hysteresis curves of friction

    图 7  理想的刚度曲线

    Figure 7.  Ideal stiffness curve

    图 8  实际的刚度曲线

    Figure 8.  Actual stiffness curve

    图 9  减速器滞回曲线的组成

    Figure 9.  Composition of hysteresis curve of reducer

    图 10  几何回差、弹性回差和总回差之间的关系

    Figure 10.  Relationship among geometric lost motion, elastic lost motion and total lost motion

    图 11  减速器输入端固定时的几何误差滞回曲线

    Figure 11.  Geometric error hysteresis curves with fixed inputs to the reducer

    图 12  实验用减速器

    Figure 12.  Experimental reducer

    图 13  实验用减速器结构

    Figure 13.  Structure of experimental reducer

    图 14  测试设备

    Figure 14.  Testing machine

    图 15  测试步骤[16]

    Figure 15.  Test step[16]

    图 16  加载力矩为0.01 N·m时的测试曲线

    Figure 16.  Test curve when the loading torque is 0.01 N·m

    图 17  加载力矩0.02 N·m时的测试曲线

    Figure 17.  Test curve when the loading torque is 0.02 N·m

    图 18  加载力矩在0.1 N·m时的测试曲线

    Figure 18.  Test curve when the loading torque is 0.1 N·m

    图 19  叠加的曲线

    Figure 19.  Superimposed curve

    图 20  减速器1以加载速率为0.01 (N·m)/s时的测试曲线

    Figure 20.  Test curve of reducer 1 at a loading rate of 0.01 (N·m)/s

    图 21  减速器1以加载速率为0.01 (N·m)/s时的测试曲线

    Figure 21.  Test curve of reducer 1 at a loading rate of 0.01 (N·m)/s

    图 22  减速器1以加载速率为0.01 (N·m)/s时的测试曲线

    Figure 22.  Test curve of reducer 1 at a loading rate of 0.01 (N·m)/s

    图 23  减速器2以加载速度0.01 (N·m)/s时的测速曲线

    Figure 23.  Test curve of reducer 2 at a loading rate of 0.01 (N·m)/s

    图 24  减速器2以加载速率为0.05 (N·m)/s时的测速曲线

    Figure 24.  Test curve of reducer 2 at a loading rate of 0.05 (N·m)/s

    图 25  减速器2以加载速率为0.1 (N·m)/s时的测速曲线

    Figure 25.  Test curve of reducer 2 at a loading rate of 0.1 (N·m)/s

    表  1  减速器参数

    Table  1.   The parameters of reducer

    减速器 材料 传动比 额定转速/(r·min−1) 峰值转速/(r·min−1) 额定力矩/(N·m) 几何回差/(′) 工作效率/%
    减速器1 Fe、Cu、Ni 1296 6.0 23.0 0.1 180.0 56
    减速器2 POM 1296 6.0 23.0 0.1 190.0 58
    下载: 导出CSV

    表  3  减速器1的几何回差测试结果

    Table  3.   Experiment results of geometric lost motion of reducer 1

    加载速率/
    (N·m·s−1)
    δg/(′) 平均值/(′)
    180° 360°
    0.01 88.32 88.97 87.29 88.19
    0.05 88.68 88.46 88.77 88.64
    0.1 87.96 87.69 88.54 88.06
    下载: 导出CSV

    表  2  减速器1的总回差测试结果

    Table  2.   Experiment results of total lost motion of reducer 1

    加载速率/
    (N·m·s−1)
    δ/(′) 平均值/(′)
    180° 360°
    0.01 261.23 260.32 260.28 260.61
    0.05 258.72 257.29 258.91 258.31
    0.1 255.89 255.27 254.37 255.18
    下载: 导出CSV

    表  4  减速器1的弹性回差测试结果

    Table  4.   Experiment results of elastic lost motion of reducer 1

    加载速率/
    (N·m·s−1)
    δe/(′) 平均值/(′)
    180° 360°
    0.01 172.91 171.35 172.99 172.42
    0.05 170.04 168.83 170.14 169.67
    0.1 167.93 167.58 165.83 167.11
    下载: 导出CSV

    表  6  减速器2的几何回差测试结果

    Table  6.   Experiment results of geometric lost motion of reducer 2

    加载速率/
    (N·m·s−1)
    δg/(′) 平均值/(′)
    180° 360°
    0.01 261.25 260.42 260.61 260.76
    0.05 260.31 260.39 260.82 260.51
    0.1 259.91 260.30 260.77 260.33
    下载: 导出CSV

    表  5  减速器2的总回差测试结果

    Table  5.   Experiment results of total lost motion of reducer 2

    加载速率/
    (N·m·s−1)
    δ/(′) 平均值/(′)
    180° 360°
    0.01 620.86 619.37 621.33 620.52
    0.05 607.23 608.11 608.92 608.09
    0.1 587.47 589.23 588.26 588.32
    下载: 导出CSV

    表  7  减速器2的弹性回差测试结果

    Table  7.   Experiment results of elastic lost motion of reducer 2

    加载速率/
    (N·m·s−1)
    δe/(′) 平均值/(′)
    180° 360°
    0.01 359.61 358.95 360.72 359.76
    0.05 346.92 347.72 348.10 347.58
    0.1 327.56 328.93 327.49 327.99
    下载: 导出CSV
  • [1] SPREKELS J, BROKATE M . Hysteresis and phase transitions[M]. Berlin: Springer, 1996: 28-52.
    [2] EWING J A. Experimental researches in magnetism[J]. Philosophical Transactions of the Royal Society of London, 1885, 176: 523-640. doi: 10.1098/rstl.1885.0010
    [3] 徐航. 精密减速器回差测量与评价体系研究[D]. 北京: 北京工业大学, 2018: 27-44.

    XU H. Research on measurement and evaluation system of precision reducer lost motion[D]. Beijing: Beijing University of Technology, 2018: 27-44(in Chinese) .
    [4] XU H, SHI Z Y, YU B, et al. Optimal measurement speed and its determination method in the transmission precision evaluation of precision reducers[J]. Applied Sciences, 2019, 9(10): 2146. doi: 10.3390/app9102146
    [5] 程慧明, 石照耀, 于渤, 等. 服务机器人小型关节回差测量的实验研究[J]. 仪器仪表学报, 2020, 41(5): 48-57.

    CHENG H M, SHI Z Y, YU B, et al. Experiment research on hysteresis measurement of the small-size joint of service robot[J]. Chinese Journal of Scientific Instrument, 2020, 41(5): 48-57(in Chinese).
    [6] TAGHIRAD H D, BÉLANGER P R. Modeling and parameter identification of harmonic drive systems[J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(4): 439-444. doi: 10.1115/1.2801484
    [7] DHAOUADI R, GHORBEL F H, GANDHI P S. A new dynamic model of hysteresis in harmonic drives[J]. IEEE Transactions on Industrial Electronics, 2003, 50(6): 1165-1171. doi: 10.1109/TIE.2003.819661
    [8] SUSHANT M D. Dynamic hysteresis modeling and applications [D]. Huston: Rice University, 2004: 28-46.
    [9] 郑杰基, 陈凌宇, 范大鹏, 等. 双电机精密传动机构消隙方法研究[J]. 中国机械工程, 2022, 33(22): 2684-2692. doi: 10.3969/j.issn.1004-132X.2022.22.005

    ZHENG J J, CHEN L Y, FAN D P, et al. Research on backlash elimination method of dual-motor precision transmission mechanisms[J]. China Mechanical Engineering, 2022, 33(22): 2684-2692(in Chinese). doi: 10.3969/j.issn.1004-132X.2022.22.005
    [10] 赵国峰, 樊卫华, 陈庆伟, 等. 齿隙非线性研究进展[J]. 兵工学报, 2006, 27(6): 1072-1080. doi: 10.3321/j.issn:1000-1093.2006.06.027

    ZHAO G F, FAN W H, CHEN Q W, et al. A survey on backlash nonlinearity[J]. Acta Armamentarii, 2006, 27(6): 1072-1080(in Chinese). doi: 10.3321/j.issn:1000-1093.2006.06.027
    [11] ZHANG X, JIANG G D, ZOU C, et al. Modeling of compliance and hysteresis with erasure property in harmonic drive by active loading[C]//Proceedings of the 2017 IEEE International Conference on Cybernetics and Intelligent Systems and IEEE Conference on Robotics, Automation and Mechatronics. Piscataway: IEEE Press, 2017: 439-445.
    [12] 房建成, 陈萌, 李海涛. 磁悬浮控制力矩陀螺框架系统谐波减速器的迟滞建模[J]. 光学 精密工程, 2014, 22(11): 2950-2958. doi: 10.3788/OPE.20142211.2950

    FANG J C, CHEN M, LI H T. Hysteresis modeling for harmonic drive in DGMSCMG gimbal system[J]. Optics and Precision Engineering, 2014, 22(11): 2950-2958(in Chinese). doi: 10.3788/OPE.20142211.2950
    [13] TAO G, KOKOTOVIC P V. Continuous-time adaptive control of systems with unknown backlash[J]. IEEE Transactions on Automatic Control, 1995, 40(6): 1083-1087. doi: 10.1109/9.388689
    [14] MORRIS K A. What is hysteresis?[J]. Applied Mechanics Reviews, 2011, 64(5): 050801. doi: 10.1115/1.4007112
    [15] 石照耀, 程慧明, 朱逸文, 等. 服务机器人小型关节综合性能测试机[J]. 光学 精密工程, 2020, 28(8): 1707-1714.

    SHI Z Y, CHENG H M, ZHU Y W, et al. Testing machine for small-size electro-mechanical actuator used in robots[J]. Optics and Precision Engineering, 2020, 28(8): 1707-1714(in Chinese).
    [16] 石照耀, 徐航, 韩方旭, 等. 精密减速器回差测量的现状与趋势[J]. 光学 精密工程, 2018, 26(9): 2150-2158. doi: 10.3788/OPE.20182609.2150

    SHI Z Y, XU H, HAN F X, et al. Current status and trends in precision reducer lost motion measurement[J]. Optics and Precision Engineering, 2018, 26(9): 2150-2158(in Chinese). doi: 10.3788/OPE.20182609.2150
    [17] 石照耀, 徐航, 林家春, 等. 精密减速器回差测量与评价体系研究[J]. 仪器仪表学报, 2018, 39(6): 56-63.

    SHI Z Y, XU H, LIN J C, et al. Research on measurement and evaluation system of precision reducer lost motion[J]. Chinese Journal of Scientific Instrument, 2018, 39(6): 56-63(in Chinese).
    [18] PARLITZ U, HORNSTEIN A, ENGSTER D, et al. Identification of pre-sliding friction dynamics[J]. Chaos, 2004, 14(2): 420-430.
    [19] 国家市场监督管理总局, 国家标准化管理委员会. 精密减速器回差测试与评价方法: GB/T 40731—2021[S]. 北京: 中国标准出版社, 2021.

    State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Method of test and evaluation for lost motion of precision reducer: GB/T 40731—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
  • 加载中
图(25) / 表(7)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  109
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 录用日期:  2023-04-23
  • 网络出版日期:  2023-05-10
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答