留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

终端区离场航空器自主路径规划

王红勇 郭宇鹏

王红勇,郭宇鹏. 终端区离场航空器自主路径规划[J]. 北京航空航天大学学报,2025,51(2):446-456 doi: 10.13700/j.bh.1001-5965.2023.0065
引用本文: 王红勇,郭宇鹏. 终端区离场航空器自主路径规划[J]. 北京航空航天大学学报,2025,51(2):446-456 doi: 10.13700/j.bh.1001-5965.2023.0065
WANG H Y,GUO Y P. Autonomous path planning of departing aircraft in terminal area[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):446-456 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0065
Citation: WANG H Y,GUO Y P. Autonomous path planning of departing aircraft in terminal area[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):446-456 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0065

终端区离场航空器自主路径规划

doi: 10.13700/j.bh.1001-5965.2023.0065
基金项目: 天津市自然科学基金(21JCZDJC00840)
详细信息
    通讯作者:

    E-mail:hy_wang@cauc.edu.cn

  • 中图分类号: V355;U8

Autonomous path planning of departing aircraft in terminal area

Funds: Natural Science Foundation of Tianjin (21JCZDJC00840)
More Information
  • 摘要:

    随着航空器自主保持间隔运行概念的逐渐发展,基于连续爬升运行(CCO)模式,可有效解决当前终端区内航空器离场路径固定单一所造成空域运行效率低问题。为此,提出一种基于人工势场-粒子群优化(APF-PSO)联合算法的终端区离场航空器自主路径规划方法。构建面向航空器自主运行模式的空域环境模型,对空域环境进行栅格化处理并计算各栅格的空域复杂度,限制离场航空器进入高复杂度栅格以保障运行安全;构建基于BADA数据库和减退力爬升模式的航空器爬升性能约束模型;应用APF-PSO联合算法进行路径规划,通过粒子群优化(PSO)算法广域搜索思想解决人工势场法(APF)固有的局部极值-目标不可达问题;使用贝塞尔曲线法优化该路径,引入滑动时间窗口理念优化航空器离场时刻;使用上海终端空域的实际结构和运行数据,应用所提方法进行仿真模拟。仿真结果表明:APF-PSO联合算法可有效生成航空器无冲突离场路径并规避繁忙空域,优化处理后的路径满足航空器爬升性能约束,且优于实际运行路径(路径长度减少23.78%,最大转弯率降低55.73%,最大爬升率降低9.94%);离场航空器自主运行模式下的空中交通复杂性较当前运行模式更为均衡(栅格复杂度峰值降低3.92%),可有效提升空域利用率。

     

  • 图 1  冲突规避栅格位置关系示意图

    Figure 1.  Schematic diagram of position relation of conflict avoidance grid

    图 2  CCO模式示意图

    Figure 2.  Schematic diagram of CCO mode

    图 3  滑动时间窗口示意图

    Figure 3.  Schematic diagram of sliding time window

    表  1  某型航空器基础参数

    Table  1.   Basic parameters of a certain aircraft type

    参数 数值 参数 数值
    机翼面积$ S $/m3 283.3 推力性能参数$ {C_{{\text{Tc}},3}} $ 0.419×1010
    阻力性能参数$ {C_{D0,{\mathrm{CR}}}} $ 0.014 推力性能参数$ {C_{{\text{Tc}},5}} $ 0.0055
    阻力性能参数$ {C_{D2,{\mathrm{CR}}}} $ 0.049 推力性能参数$ {C_{{\mathrm{red}}}} $ 0.10
    推力性能参数$ {C_{{\text{Tc}},1}} $ 0.296×106 最大质量$ {m_{\max }} $/kg 181400
    推力性能参数$ {C_{{\text{Tc}},2}} $ 0.509×105 最小质量$ {m_{\min }} $/kg 89900
    下载: 导出CSV

    表  2  某型航空器性能随高度变化数据

    Table  2.   A certain type of aircraft performance changes with height data

    高度/m 最大爬升
    推力/N
    航空器最大
    速度/(km·h−1)
    最小转弯
    半径/km
    最大爬升率/
    (m·min−1)
    900 274783.56 351.88 3.69 799.92
    1200 273142.29 416.70 5.18 974.45
    1800 269866.11 503.74 7.57 1224.60
    2400 266598.35 518.56 8.02 1175.16
    3000 263339.04 535.23 8.54 1122.80
    3600 260088.16 659.31 12.96 1111.16
    4200 256845.72 677.83 13.70 1044.26
    4800 253611.72 698.21 14.53 977.36
    5400 250386.16 718.58 15.39 907.55
    6000 247169.04 740.80 16.36 837.73
    下载: 导出CSV

    表  3  APF-PSO联合算法参数定义及取值

    Table  3.   Parameters definition and values of APF-PSO algorithm

    障碍物斥力
    系数$ {k_{{\text{rep}}}} $
    斥力影响范围
    $ {d_0} $(椭球距离)/km
    PSO算法迭代
    次数$ T $
    加速度
    常数$ {c_1} $
    目标点引力
    系数$ {k_{{\mathrm{att}}}} $
    位置系数参考椭球
    距离$ {d_{{\mathrm{dtc}}}} $/km
    惯性
    权重$ \omega $
    加速度
    常数$ {c_2} $
    9 $ 2.5\sqrt 3 $ 100 2 1 $ 10\sqrt 3 $ 0.7 2
    下载: 导出CSV

    表  4  离场航空器路径曲线性能对比

    Table  4.   Performance comparison of departing aircraft path curves

    平均路径长度/km 平均最大转弯率/((°)·min−1) 平均最大爬升梯度/% 平均最大爬升率/(m·min−1)
    实际运行
    路径
    CCO规划
    路径
    时刻
    优化后
    实际运行
    路径
    CCO规划
    路径
    时刻
    优化后
    实际运行
    路径
    CCO规划
    路径
    时刻
    优化后
    实际运行
    路径
    CCO规划
    路径
    时刻
    优化后
    241.45 184.04 180.75 55.50 24.57 24.71 9.44 9.47 9.06 901.13 811.55 809.88
    下载: 导出CSV

    表  5  空域运行态势数据对比

    Table  5.   Comparison of airspace operational situation data

    时间片 栅格复杂度峰值 高复杂度栅格占比/%
    实际运行路径 CCO规划路径 离场时刻优化后路径 实际运行路径 CCO规划路径 离场时刻优化后路径
    1 2.115 2.107 2.037 5.83 6.00 5.96
    2 4.072 3.571 3.698 3.23 3.63 3.74
    $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
    58 3.063 2.507 2.527 2.96 3.61 3.22
    59 3.718 3.391 3.288 2.10 2.62 3.00
    下载: 导出CSV

    表  6  算法性能对比统计

    Table  6.   Statistical of algorithms performance comparison

    算法 路径规划成功率/% 运算时间/s 路径长度/km 最大转弯率/((°)·min−1) 最大爬升梯度/% 最大爬升率/(m·min−1)
    APF-PSO联合算法 100 4.42 184.04 24.57 9.47 811.55
    APF算法 73.1 1.37 177.30 31.26 12.96 819.34
    A*算法 96.2 3.61 183.73 26.10 12.17 846.58
    下载: 导出CSV
  • [1] International Civil Aviation Organization. Global air traffic management operational concept[EB/OL]. (2012-08-28)[2023-02-15]. https://www.icao.int/Meetings/anconf12/Document%20Archive/9854_cons_en%5B1%5D.pdf.
    [2] Federal Aviation Administration. NextGen implementation plan-FAA[EB/OL]. (2022-07-15)[2023-02-15]. https://www.faa.gov/nextgen/2018-2019-nextgen-implementation-plan.
    [3] DEGAS A, KADDOUM E, GLEIZES M P, et al. Cooperative multi-agent model for collision avoidance applied to air traffic management[J]. Engineering Applications of Artificial Intelligence, 2021, 102: 104286. doi: 10.1016/j.engappai.2021.104286
    [4] 蔡开泉, 赵鹏. 空中交通自主间隔管控技术研究[J]. 南京航空航天大学学报, 2022, 54(4): 688-699.

    CAI K Q, ZHAO P. Key technologies on air traffic self-separation management[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(4): 688-699(in Chinese).
    [5] CHEN Y T, HU M H, YANG L. Autonomous planning of optimal four-dimensional trajectory for real-time en-route airspace operation with solution space visualisation[J]. Transportation Research Part C: Emerging Technologies, 2022, 140: 103701. doi: 10.1016/j.trc.2022.103701
    [6] 张洪海, 汤一文, 许炎. TBO模式下终端区进场交通流优化模型与仿真分析[J]. 航空学报, 2020, 41(7): 323844.

    ZHANG H H, TANG Y W, XU Y. Optimizing arrival traffic flow in airport terminal airspace under trajectory based operations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 323844(in Chinese).
    [7] International Civil Aviation Organization. Global, continuous climb operations (CCO) manual. [EB/OL]. (2013-10-25)[2023-02-16]. https://applications.icao.int/tools/ATMiKIT/story_content/external_files/10260008117raft_en_CCO.pdf.
    [8] ALLIGIER R, GIANAZZA D. Learning aircraft operational factors to improve aircraft climb prediction: A large scale multi-airport study[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 72-95. doi: 10.1016/j.trc.2018.08.012
    [9] 杜卓铭, 张军峰, 苗洪连, 等. 考虑推力意图的航空器连续爬升垂直剖面预测[J]. 北京航空航天大学学报, 2024, 50(4): 1347-1353.

    DU Z M, ZHANG J F, MIAO H L, et al. Aircraft vertical profile prediction for continuous climb based on thrust intention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(4): 1347-1353(in Chinese).
    [10] DESHMUKH R, SUN D W, KIM K, et al. Temporal logic learning-based anomaly detection in metroplex terminal airspace operations[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 103036. doi: 10.1016/j.trc.2021.103036
    [11] MURÇA M C R, HANSMAN R J. Predicting and planning airport acceptance rates in metroplex systems for improved traffic flow management decision support[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 301-323. doi: 10.1016/j.trc.2018.10.020
    [12] GONZÁLEZ-ARRIBAS D, SOLER M, SANJURJO-RIVO M, et al. Robust aircraft trajectory planning under uncertain convective environments with optimal control and rapidly developing thunderstorms[J]. Aerospace Science and Technology, 2019, 89: 445-459. doi: 10.1016/j.ast.2019.03.051
    [13] LIN Y C, SARIPALLI S. Sampling-based path planning for UAV collision avoidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11): 3179-3192. doi: 10.1109/TITS.2017.2673778
    [14] WOO J W, AN J Y, CHO M G, et al. Integration of path planning, trajectory generation and trajectory tracking control for aircraft mission autonomy[J]. Aerospace Science and Technology, 2021, 118: 107014. doi: 10.1016/j.ast.2021.107014
    [15] DU Y S, ZHANG X J, NIE Z L. A real-time collision avoidance strategy in dynamic airspace based on dynamic artificial potential field algorithm[J]. IEEE Access, 2019, 7: 169469-169479. doi: 10.1109/ACCESS.2019.2953946
    [16] CHEN L L, HAN S H, DU C K, et al. A real-time integrated optimization of the aircraft holding time and rerouting under risk area[J]. Annals of Operations Research, 2022, 310(1): 7-26. doi: 10.1007/s10479-020-03816-0
    [17] 张大志, 刘万辉, 缪存孝, 等. 全向移动机器人动态避障方法[J]. 北京航空航天大学学报, 2021, 47(6): 1115-1123.

    ZHANG D Z, LIU W H, MIAO C X, et al. Dynamic obstacle avoidance method for omnidirectional mobile robots[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1115-1123(in Chinese).
    [18] 韩尧, 李少华. 基于改进人工势场法的无人机航迹规划[J]. 系统工程与电子技术, 2021, 43(11): 3305-3311. doi: 10.12305/j.issn.1001-506X.2021.11.31

    HAN Y, LI S H. UAV path planning based on improved artificial potential field[J]. Systems Engineering and Electronics, 2021, 43(11): 3305-3311(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.11.31
    [19] LIU Y, ZHANG X J, ZHANG Y, et al. Collision free 4D path planning for multiple UAVs based on spatial refined voting mechanism and PSO approach[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1504-1519. doi: 10.1016/j.cja.2019.03.026
    [20] 徐钊, 胡劲文, 马云红, 等. 无人机碰撞规避路径规划算法研究[J]. 西北工业大学学报, 2019, 37(1): 100-106. doi: 10.3969/j.issn.1000-2758.2019.01.015

    XU Z, HU J W, MA Y H, et al. A study on path planning algorithms of UAV collision avoidance[J]. Journal of Northwestern Polytechnical University, 2019, 37(1): 100-106(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.01.015
    [21] 朱永文, 陈志杰, 蒲钒, 等. 数字化空域系统发展研究[J]. 中国工程科学, 2021, 23(3): 135-143. doi: 10.15302/J-SSCAE-2021.03.018

    ZHU Y W, CHEN Z J, PU F, et al. Development of digital airspace system[J]. Strategic Study of CAE, 2021, 23(3): 135-143(in Chinese). doi: 10.15302/J-SSCAE-2021.03.018
    [22] 中华人民共和国交通运输部. 民用航空空中交通管理规则[EB/OL]. (2017-09-29)[2023-02-17]. https://xxgk.mot.gov.cn/2020/gz/202303/W020230426346468961118.pdf.

    Ministry of Transport of the People's Republic of China. Civil aviation air traffic management regulations[EB/OL]. (2017-09-29)[2023-02-17]. https://xxgk.mot.gov.cn/2020/gz/202303/W020230426346468961118.pdf(in Chinese).
    [23] 王红勇, 郭宇鹏. 基于航空器自主运行的空中交通复杂性建模[J]. 交通运输系统工程与信息, 2022, 22(2): 305-312.

    WANG H Y, GUO Y P. Air traffic complexity model based on aircraft self-separation operation[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 305-312(in Chinese).
    [24] PARK S G, MENON P K. Game-theoretic trajectory-negotiation mechanism for merging air traffic management[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(12): 3061-3074. doi: 10.2514/1.G002716
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  489
  • HTML全文浏览量:  119
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 录用日期:  2023-04-10
  • 网络出版日期:  2023-04-26
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答