留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多星联合被动微波成像的运动目标检测

李睿 邓丽 段然

李睿,邓丽,段然. 基于多星联合被动微波成像的运动目标检测[J]. 北京航空航天大学学报,2025,51(2):594-601 doi: 10.13700/j.bh.1001-5965.2023.0076
引用本文: 李睿,邓丽,段然. 基于多星联合被动微波成像的运动目标检测[J]. 北京航空航天大学学报,2025,51(2):594-601 doi: 10.13700/j.bh.1001-5965.2023.0076
LI R,DENG L,DUAN R. Moving targets detection based on multi-satellite joint passive microwave imaging[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):594-601 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0076
Citation: LI R,DENG L,DUAN R. Moving targets detection based on multi-satellite joint passive microwave imaging[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):594-601 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0076

基于多星联合被动微波成像的运动目标检测

doi: 10.13700/j.bh.1001-5965.2023.0076
基金项目: 国家重点研发计划(2021YFB3900100)
详细信息
    通讯作者:

    E-mail:dengli@nssc.ac.cn

  • 中图分类号: TP722.6;TP391.41

Moving targets detection based on multi-satellite joint passive microwave imaging

Funds: National Key Research and Development Program of China (2021YFB3900100)
More Information
  • 摘要:

    利用卫星编队形成天基被动干涉成像系统可获得高空间分辨率,但探测基线稀疏会导致反演图像存在混叠,影响单像素点目标检测。考虑观测区域的缓变特性,提出一种基于图像序列的目标检测方法。通过多帧图像进行背景估计,对反演图像进行背景消除;基于旁瓣特征聚集能量,估计目标区域噪声,筛选出候选目标;结合时序运动特征得到目标的运动轨迹,实现运动点目标的检测。以10颗地球静止轨道卫星构成的编队系统为例,对50个舰船点目标探测,进行300次仿真实验。结果表明:所提方法可实现大视场范围内的点目标检测,平均虚警率为14.5%,平均漏警率为19.5%。

     

  • 图 1  综合孔径微波成像过程

    Figure 1.  Process of synthesis aperture imaging

    图 2  卫星编队构型及基线分布示意图

    Figure 2.  Schematic diagram of satellite formation configuration and baseline distribution

    图 3  本文方法目标检测流程

    Figure 3.  Target detection process of proposed method

    图 4  卫星编队模拟场景

    Figure 4.  Satellite formation in the simulation experiments

    图 5  仿真模拟图像

    Figure 5.  Image in the simulation experiments

    图 6  多次实验信噪比结果

    Figure 6.  SNR of multiple experiments.

    图 7  多次实验算法检测结果

    Figure 7.  Detection results of the algorithm in multiple experiments.

    表  1  各卫星的轨道参数

    Table  1.   Orbital elements of each satellite

    卫星相对轨道要素 半长轴/km 偏心率/10−6 轨道倾角/(°) 近地点幅角/(°) 升交点赤经/(°) 平近点角/(°)
    参考卫星 42164 0 0 0 0 0
    环绕卫星1 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 81.011 171.011
    环绕卫星2 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 225.814 315.814
    环绕卫星3 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 −61.375 28.625
    环绕卫星4 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 10.812 100.812
    环绕卫星5 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 153.198 243.198
    环绕卫星6 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 −62.550 27.450
    环绕卫星7 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 116.695 206.695
    环绕卫星8 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 208.878 298.878
    环绕卫星9 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 24.592 114.592
    下载: 导出CSV
  • [1] 吴季, 刘浩, 阎敬业, 等. 干涉式被动微波成像技术[J]. 遥感技术与应用, 2009, 24(1): 1-12. doi: 10.11873/j.issn.1004-0323.2009.1.1

    WU J, LIU H, YAN J Y, et al. Interferometric imaging technology for passive microwave radiometry[J]. Remote Sensing Technology and Application, 2009, 24(1): 1-12 (in Chinese). doi: 10.11873/j.issn.1004-0323.2009.1.1
    [2] 吴季, 刘浩, 孙伟英, 等. 综合孔径微波辐射计的技术发展及其应用展望[J]. 遥感技术与应用, 2005, 20(1): 24-29. doi: 10.3969/j.issn.1004-0323.2005.01.005

    WU J, LIU H, SUN W Y, et al. Technical development and application prospect of synthetic aperture radiometer[J]. Remote Sensing Technology and Application, 2005, 20(1): 24-29(in Chinese). doi: 10.3969/j.issn.1004-0323.2005.01.005
    [3] 卢海梁, 王志强, 高超, 等. 基于被动干涉微波亮温图像的海面目标探测算法研究[J]. 电子与信息学报, 2020, 42(3): 563-572. doi: 10.11999/JEIT190256

    LU H L, WANG Z Q, GAO C, et al. Research on the detection algorithm for sea surface targets based on passive interferometric microwave images[J]. Journal of Electronics & Information Technology, 2020, 42(3): 563-572 (in Chinese). doi: 10.11999/JEIT190256
    [4] ZHENG T, HU F, WU L, et al. Synthesis of large alias-free field-of-view linear arrays for synthetic aperture interferometric radiometers[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 7916-7926. doi: 10.1109/TAP.2020.3000560
    [5] ZHU D, HU F, LANG L, et al. Radiometric sensitivity and angular resolution optimization of thinned linear arrays in microwave interferometric radiometry[J]. IEEE Transactions on Antennas and Propagation, 2018, 67(1): 568-573.
    [6] XIAO C W, WANG X, DOU H F, et al. Non-uniform synthetic aperture radiometer image reconstruction based on deep convolutional neural network[J]. Remote Sensing, 2022, 14(10): 2359. doi: 10.3390/rs14102359
    [7] 卢海梁, 李一楠, 宋广南, 等. 海面目标星载微波辐射无源探测技术研究[J]. 红外与毫米波学报, 2019, 38(5): 674-682. doi: 10.11972/j.issn.1001-9014.2019.05.020

    LU H L, LI Y N, SONG G N, et al. Research on the passive detection technology using space-borne synthesis aperture microwave radiometers for the sea surface target[J]. Journal of Infrared and Millimeter Waves, 2019, 38(5): 674-682 (in Chinese). doi: 10.11972/j.issn.1001-9014.2019.05.020
    [8] GUO T S, GUO X, LIU H, et al. Study of the real-time onboard radio frequency interference detection and mitigation strategy for MICAP L-band radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5304914.
    [9] 杨宜, 邓丽, 段然, 等. 基于背景和变化稀疏性的瞬变源图像重建算法[J]. 北京航空航天大学学报, 2020, 46(5): 915-924.

    YANG Y, DENG L, DUAN R, et al. A image reconstruction algorithm of transient sources based on combined sparsities of background and variation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 915-924 (in Chinese).
    [10] FU P, ZHU D, HU F, et al. A near-field imaging algorithm based on angular spectrum theory for synthetic aperture interferometric radiometer[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(7): 3606-3616. doi: 10.1109/TMTT.2022.3175156
    [11] 杨博, 王浩帆, 苗峻, 等. 基于卫星编队的空间碎片视觉高精度导航方法[J]. 中国空间科学技术, 2019, 39(1): 40-48.

    YANG B, WANG H F, MIAO J, et al. High-precision visual navigation for space debris based on satellite formation[J]. Chinese Space Science and Technology, 2019, 39(1): 40-48 (in Chinese).
    [12] 陈杰, 杨威, 王鹏波, 等. 多方位角观测星载SAR技术研究[J]. 雷达学报, 2020, 9(2): 205-220. doi: 10.12000/JR20015

    CHEN J, YANG W, WANG P B, et al. Review of novel azimuthal multi-angle observation spaceborne SAR technique[J]. Journal of Radars, 2020, 9(2): 205-220 (in Chinese). doi: 10.12000/JR20015
    [13] LI Y Q, FENG X E, WANG G, et al. A real-coding population-based incremental learning evolutionary algorithm for multi-satellite scheduling[J]. Electronics, 2022, 11(7): 1147. doi: 10.3390/electronics11071147
    [14] LI X F, ZHENG W Z, YANG X F, et al. Coexistence of atmospheric gravity waves and boundary layer rolls observed by SAR[J]. Journal of the Atmospheric Sciences, 2013, 70(11): 3448-3459. doi: 10.1175/JAS-D-12-0347.1
    [15] SUN X C, GENG C, DENG L, et al. Geolocation of formation-flying spacecraft using relative position vector measurements[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(4): 764-773. doi: 10.2514/1.G006377
    [16] SHI Y, XU Y D, DENG L, et al. Imaging sensitivity of a linear interferometer array on lunar orbit[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(2): 3046-3062. doi: 10.1093/mnras/stab3623
    [17] CHEN X L, YAN J Y, DENG L, et al. Discovering the sky at the longest wavelengths with a lunar orbit array[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 1-10.
    [18] GUO X, CAMPS A, PARK H, et al. Phase and amplitude calibrations of rotating equispaced circular array for geostationary microwave interferometric radiometers—Theory and methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5300615.
    [19] PHILIP CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 574-581.
    [20] WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226. doi: 10.1016/j.patcog.2016.04.002
    [21] XIA C Q, LI X R, YIN Y P, et al. Multiple infrared small targets detection based on hierarchical maximal entropy random walk[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 7001805.
    [22] XIA C Q, LI X R, ZHAO L Y, et al. Modified graph Laplacian model with local contrast and consistency constraint for small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5807-5822. doi: 10.1109/JSTARS.2020.3024642
    [23] ZHANG H, ZHANG L, YUAN D, et al. Infrared small target detection based on local intensity and gradient properties[J]. Infrared Physics & Technology, 2018, 89: 88-96.
    [24] ZHANG L D, PENG Z M. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11(4): 382. doi: 10.3390/rs11040382
    [25] LI J Y, SHUI P L, GUO Z X, et al. Fast principal component analysis-based detection of small targets in sea clutter[J]. IET Radar, Sonar & Navigation, 2022, 16(8): 1282-1291.
    [26] XU S, ZHU J, JIANG J, et al. Sea-surface floating small target detection by multi-feature detector based on isolation forest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 704-715. doi: 10.1109/JSTARS.2020.3033063
    [27] CHEN Y,ZHANG G,MA Y,et al. Small infrared target detection based on fast adaptive masking and scaling with iterative segmentation [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
    [28] 邓丽, 杨宜, 段然. 一种基于被动微波干涉成像的运动点目标的检测方法: CN107290720B[P]. 2019-12-17.

    DENG L, YANG Y, DUAN R. A moving point target detection method based on passive microwave interference imaging: CN107290720B[P]. 2019-12-17(in Chinese).
    [29] SUGIHARA EL MAGHRABY A K, GRUBISIC A, COLOMBO C, et al. A novel interferometric microwave radiometer concept using satellite formation flight for geostationary atmospheric sounding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3487-3498. doi: 10.1109/TGRS.2018.2800534
    [30] CORNWELL T J. A novel principle for optimization of the instantaneous fourier plane coverage of correlation arrays[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(8): 1165-1167. doi: 10.1109/8.7233
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  66
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-25
  • 录用日期:  2023-07-07
  • 网络出版日期:  2023-08-07
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答