-
摘要:
利用卫星编队形成天基被动干涉成像系统可获得高空间分辨率,但探测基线稀疏会导致反演图像存在混叠,影响单像素点目标检测。考虑观测区域的缓变特性,提出一种基于图像序列的目标检测方法。通过多帧图像进行背景估计,对反演图像进行背景消除;基于旁瓣特征聚集能量,估计目标区域噪声,筛选出候选目标;结合时序运动特征得到目标的运动轨迹,实现运动点目标的检测。以10颗地球静止轨道卫星构成的编队系统为例,对50个舰船点目标探测,进行300次仿真实验。结果表明:所提方法可实现大视场范围内的点目标检测,平均虚警率为14.5%,平均漏警率为19.5%。
Abstract:High spatial resolution can be achieved by the satellite formation-based passive interference imaging system in space, however the retrieved image may contain aliasing noise due to sparse detection baselines, which will impede the detection of single-pixel point targets. Considering the slow-varying characteristics of the observation area, a target detection method based on image sequences is proposed. The observation background is estimated by multi-frame retrieved images and historical data, and then background subtraction is applied to the retrieved images. Next, by accumulating sidelobe energy and estimating the noise in the target neighborhood, potential targets are chosen. Lastly, the tracks of the targets are acquired by analyzing the movement characteristics. In the simulation experiment, 10 satellites running in geostationary orbit are designed to detect 50 ship targets in the sea. A total of 300 trials are tested, and the average false alarm rate and average missed alarm rate are shown to be as high as 14.5% and 19.5%, respectively.
-
表 1 各卫星的轨道参数
Table 1. Orbital elements of each satellite
卫星相对轨道要素 半长轴/km 偏心率/10−6 轨道倾角/(°) 近地点幅角/(°) 升交点赤经/(°) 平近点角/(°) 参考卫星 42164 0 0 0 0 0 环绕卫星1 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 81.011 171.011 环绕卫星2 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 225.814 315.814 环绕卫星3 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 −61.375 28.625 环绕卫星4 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 10.812 100.812 环绕卫星5 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 153.198 243.198 环绕卫星6 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 −62.550 27.450 环绕卫星7 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 116.695 206.695 环绕卫星8 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 208.878 298.878 环绕卫星9 42164 $2.372 $ $2.718 \times {10^{ - 4}}$ 90.000 24.592 114.592 -
[1] 吴季, 刘浩, 阎敬业, 等. 干涉式被动微波成像技术[J]. 遥感技术与应用, 2009, 24(1): 1-12. doi: 10.11873/j.issn.1004-0323.2009.1.1WU J, LIU H, YAN J Y, et al. Interferometric imaging technology for passive microwave radiometry[J]. Remote Sensing Technology and Application, 2009, 24(1): 1-12 (in Chinese). doi: 10.11873/j.issn.1004-0323.2009.1.1 [2] 吴季, 刘浩, 孙伟英, 等. 综合孔径微波辐射计的技术发展及其应用展望[J]. 遥感技术与应用, 2005, 20(1): 24-29. doi: 10.3969/j.issn.1004-0323.2005.01.005WU J, LIU H, SUN W Y, et al. Technical development and application prospect of synthetic aperture radiometer[J]. Remote Sensing Technology and Application, 2005, 20(1): 24-29(in Chinese). doi: 10.3969/j.issn.1004-0323.2005.01.005 [3] 卢海梁, 王志强, 高超, 等. 基于被动干涉微波亮温图像的海面目标探测算法研究[J]. 电子与信息学报, 2020, 42(3): 563-572. doi: 10.11999/JEIT190256LU H L, WANG Z Q, GAO C, et al. Research on the detection algorithm for sea surface targets based on passive interferometric microwave images[J]. Journal of Electronics & Information Technology, 2020, 42(3): 563-572 (in Chinese). doi: 10.11999/JEIT190256 [4] ZHENG T, HU F, WU L, et al. Synthesis of large alias-free field-of-view linear arrays for synthetic aperture interferometric radiometers[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 7916-7926. doi: 10.1109/TAP.2020.3000560 [5] ZHU D, HU F, LANG L, et al. Radiometric sensitivity and angular resolution optimization of thinned linear arrays in microwave interferometric radiometry[J]. IEEE Transactions on Antennas and Propagation, 2018, 67(1): 568-573. [6] XIAO C W, WANG X, DOU H F, et al. Non-uniform synthetic aperture radiometer image reconstruction based on deep convolutional neural network[J]. Remote Sensing, 2022, 14(10): 2359. doi: 10.3390/rs14102359 [7] 卢海梁, 李一楠, 宋广南, 等. 海面目标星载微波辐射无源探测技术研究[J]. 红外与毫米波学报, 2019, 38(5): 674-682. doi: 10.11972/j.issn.1001-9014.2019.05.020LU H L, LI Y N, SONG G N, et al. Research on the passive detection technology using space-borne synthesis aperture microwave radiometers for the sea surface target[J]. Journal of Infrared and Millimeter Waves, 2019, 38(5): 674-682 (in Chinese). doi: 10.11972/j.issn.1001-9014.2019.05.020 [8] GUO T S, GUO X, LIU H, et al. Study of the real-time onboard radio frequency interference detection and mitigation strategy for MICAP L-band radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5304914. [9] 杨宜, 邓丽, 段然, 等. 基于背景和变化稀疏性的瞬变源图像重建算法[J]. 北京航空航天大学学报, 2020, 46(5): 915-924.YANG Y, DENG L, DUAN R, et al. A image reconstruction algorithm of transient sources based on combined sparsities of background and variation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 915-924 (in Chinese). [10] FU P, ZHU D, HU F, et al. A near-field imaging algorithm based on angular spectrum theory for synthetic aperture interferometric radiometer[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(7): 3606-3616. doi: 10.1109/TMTT.2022.3175156 [11] 杨博, 王浩帆, 苗峻, 等. 基于卫星编队的空间碎片视觉高精度导航方法[J]. 中国空间科学技术, 2019, 39(1): 40-48.YANG B, WANG H F, MIAO J, et al. High-precision visual navigation for space debris based on satellite formation[J]. Chinese Space Science and Technology, 2019, 39(1): 40-48 (in Chinese). [12] 陈杰, 杨威, 王鹏波, 等. 多方位角观测星载SAR技术研究[J]. 雷达学报, 2020, 9(2): 205-220. doi: 10.12000/JR20015CHEN J, YANG W, WANG P B, et al. Review of novel azimuthal multi-angle observation spaceborne SAR technique[J]. Journal of Radars, 2020, 9(2): 205-220 (in Chinese). doi: 10.12000/JR20015 [13] LI Y Q, FENG X E, WANG G, et al. A real-coding population-based incremental learning evolutionary algorithm for multi-satellite scheduling[J]. Electronics, 2022, 11(7): 1147. doi: 10.3390/electronics11071147 [14] LI X F, ZHENG W Z, YANG X F, et al. Coexistence of atmospheric gravity waves and boundary layer rolls observed by SAR[J]. Journal of the Atmospheric Sciences, 2013, 70(11): 3448-3459. doi: 10.1175/JAS-D-12-0347.1 [15] SUN X C, GENG C, DENG L, et al. Geolocation of formation-flying spacecraft using relative position vector measurements[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(4): 764-773. doi: 10.2514/1.G006377 [16] SHI Y, XU Y D, DENG L, et al. Imaging sensitivity of a linear interferometer array on lunar orbit[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(2): 3046-3062. doi: 10.1093/mnras/stab3623 [17] CHEN X L, YAN J Y, DENG L, et al. Discovering the sky at the longest wavelengths with a lunar orbit array[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 1-10. [18] GUO X, CAMPS A, PARK H, et al. Phase and amplitude calibrations of rotating equispaced circular array for geostationary microwave interferometric radiometers—Theory and methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5300615. [19] PHILIP CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 574-581. [20] WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226. doi: 10.1016/j.patcog.2016.04.002 [21] XIA C Q, LI X R, YIN Y P, et al. Multiple infrared small targets detection based on hierarchical maximal entropy random walk[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 7001805. [22] XIA C Q, LI X R, ZHAO L Y, et al. Modified graph Laplacian model with local contrast and consistency constraint for small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5807-5822. doi: 10.1109/JSTARS.2020.3024642 [23] ZHANG H, ZHANG L, YUAN D, et al. Infrared small target detection based on local intensity and gradient properties[J]. Infrared Physics & Technology, 2018, 89: 88-96. [24] ZHANG L D, PENG Z M. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11(4): 382. doi: 10.3390/rs11040382 [25] LI J Y, SHUI P L, GUO Z X, et al. Fast principal component analysis-based detection of small targets in sea clutter[J]. IET Radar, Sonar & Navigation, 2022, 16(8): 1282-1291. [26] XU S, ZHU J, JIANG J, et al. Sea-surface floating small target detection by multi-feature detector based on isolation forest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 704-715. doi: 10.1109/JSTARS.2020.3033063 [27] CHEN Y,ZHANG G,MA Y,et al. Small infrared target detection based on fast adaptive masking and scaling with iterative segmentation [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [28] 邓丽, 杨宜, 段然. 一种基于被动微波干涉成像的运动点目标的检测方法: CN107290720B[P]. 2019-12-17.DENG L, YANG Y, DUAN R. A moving point target detection method based on passive microwave interference imaging: CN107290720B[P]. 2019-12-17(in Chinese). [29] SUGIHARA EL MAGHRABY A K, GRUBISIC A, COLOMBO C, et al. A novel interferometric microwave radiometer concept using satellite formation flight for geostationary atmospheric sounding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3487-3498. doi: 10.1109/TGRS.2018.2800534 [30] CORNWELL T J. A novel principle for optimization of the instantaneous fourier plane coverage of correlation arrays[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(8): 1165-1167. doi: 10.1109/8.7233 -