留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多阶段退化数据融合的伺服驱动单元可靠性建模

张忠文 彭翀 车众元 王基坤

张忠文,彭翀,车众元,等. 多阶段退化数据融合的伺服驱动单元可靠性建模[J]. 北京航空航天大学学报,2025,51(2):692-704 doi: 10.13700/j.bh.1001-5965.2023.0200
引用本文: 张忠文,彭翀,车众元,等. 多阶段退化数据融合的伺服驱动单元可靠性建模[J]. 北京航空航天大学学报,2025,51(2):692-704 doi: 10.13700/j.bh.1001-5965.2023.0200
ZHANG Z W,PENG C,CHE Z Y,et al. Servo drive unit reliability modeling with multi-stage degradation data fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):692-704 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0200
Citation: ZHANG Z W,PENG C,CHE Z Y,et al. Servo drive unit reliability modeling with multi-stage degradation data fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):692-704 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0200

多阶段退化数据融合的伺服驱动单元可靠性建模

doi: 10.13700/j.bh.1001-5965.2023.0200
基金项目: 国家自然科学基金项目“基于部件退化动态耦合关系模型的数控系统多源信息融合可靠性研究”(51875029);中央高校基本科研业务费专项资金资助(YWF-23-PTJH-0701);广东省电子信息产品可靠性技术重点实验室开放基金
详细信息
    通讯作者:

    E-mail:pch@buaa.edu.cn

  • 中图分类号: TP23;TG659

Servo drive unit reliability modeling with multi-stage degradation data fusion

Funds: National Natural Science Foundation of China (51875029); Supported by the Fundamental Research Funds for the Central Universities (YWF-23-PTJH-0701); Open Foundation of the Guangdong Provincial Key Laboratory of Electronic Information Products Reliability Technology
More Information
  • 摘要:

    为了精确评估数控系统伺服驱动单元的可靠性,提出了一种多阶段退化数据融合的可靠性建模方法。通过分析多种退化过程模型,针对不同伺服驱动单元之间存在的个体差异特点,引入随机效应并给出了考虑个体差异的可靠性模型建立方案;采用贝叶斯方法通过考虑多种退化过程,将不同退化的数据进行融合,建立了多阶段退化数据融合的伺服驱动单元可靠性模型,并采用马尔可夫链蒙特卡罗方法完成模型参数估计;在实验室环境下搭建伺服驱动单元加载测试平台,采集实验数据验证了模型的有效性。

     

  • 图 1  伺服驱动单元加载试验台

    Figure 1.  Servo drive unit loading test bench

    图 2  伺服驱动单元加载装置

    Figure 2.  Servo drive unit loading device

    图 3  水平及竖直振动退化累积曲线

    Figure 3.  Horizontal and vertical vibration degradation accumulation curves

    图 4  维纳过程参数后验分布概率密度函数及自相关性

    Figure 4.  Probability density function and auto-correlation of posterior distribution of Wiener process parameters

    图 5  伽马过程参数后验分布概率密度函数及自相关性

    Figure 5.  Probability density function and auto-correlation of posterior distribution of gamma process parameters

    图 6  逆高斯过程参数后验分布概率密度函数自相关性

    Figure 6.  Probability density function and auto-correlation of posterior distribution of inverse Gaussian process parameters

    图 7  维纳过程参数的历史迭代轨迹图

    Figure 7.  Historical iterative trajectory of Wiener process parameters

    图 8  伽马过程参数的历史迭代轨迹图

    Figure 8.  Historical iterative trajectory of Gamma process parameters

    图 9  逆高斯过程参数的历史迭代轨迹图

    Figure 9.  Historical iterative trajectory of inverse Gaussian process parameters

    图 10  融合多阶段退化数据后模型后验分布概率密度函数

    Figure 10.  Probability density function of posterior distribution of model after fusing multi-stage degradation data

    图 11  融合多阶段退化数据后模型关键参数自相关性

    Figure 11.  Auto-correlation of key model parameters after fusing multi-stage degradation data

    图 12  伺服驱动单元可靠度曲线

    Figure 12.  Reliability curve of servo drive unit

    表  1  伺服驱动单元初期试验退化数据

    Table  1.   Initial test degradation data of servo drive unit

    时间/h 水平退化/g 竖直退化/g 时间/h 水平退化/g 竖直退化/g 时间/h 水平退化/g 竖直退化/g
    0 0 0 0 0 0 0 0 0
    493 0.080 0.095 574 0.053 0.059 488 0.058 0.053
    806 0.125 0.150 996 0.090 0.101 958 0.116 0.103
    1 218 0.190 0.227 1 554 0.143 0.156 1 439 0.169 0.155
    1 544 0.246 0.276 1 972 0.184 0.202 2 044 0.240 0.222
    1 998 0.320 0.396 2 498 0.234 0.257 2 399 0.282 0.261
    2 685 0.446 0.556 3 115 0.294 0.323 2 961 0.353 0.327
    3 279 0.569 0.696 3 529 0.338 0.370 3 362 0.405 0.377
    下载: 导出CSV

    表  2  伺服驱动单元后期试验退化数据

    Table  2.   Post-test degradation data of servo drive unit

    时间/h 水平退化/g 竖直退化/g 时间/h 水平退化/g 竖直退化/g 时间/h 水平退化/g 竖直退化/g
    5 000 1.045 1.346 5 000 0.512 0.570 5 000 0.666 0.614
    5 215 1.113 1.466 5 226 0.542 0.609 5 246 0.706 0.660
    5 434 1.214 1.580 5 518 0.586 0.662 5 517 0.760 0.706
    5 742 1.361 1.785 5 748 0.619 0.704 5 693 0.796 0.741
    5 998 1.492 1.943 6 021 0.664 0.759 5 914 0.849 0.785
    6 259 1.632 2.128 6 256 0.702 0.808 6 285 0.941 0.865
    6 517 1.794 2.346 6 543 0.749 0.871 6 514 0.999 0.922
    6 698 1.911 2.492 6 796 0.799 0.933 6 738 1.069 0.977
    6 979 2.102 2.750 7 081 0.865 1.010 7 002 1.148 1.056
    7 284 2.333 3.029 7 286 0.914 1.085 7 240 1.244 1.140
    7 518 2.529 3.303 7 518 0.971 1.173 7 532 1.368 1.261
    7 752 2.737 3.615 7 693 1.017 1.236 7 733 1.469 1.353
    8048 2.999 4.003 7 978 1.131 1.389 7 969 1.640 1.482
    8244 3.222 4.293 8 258 1.258 1.582 8 259 1.899 1.700
    8517 3.534 4.780 8 488 1.384 1.811 8 529 2.196 1.987
    下载: 导出CSV

    表  3  3种模型的相关参数估计结果

    Table  3.   Three model parameter estimation results

    模型参数均值标准差MCMC误差
    维纳
    退化过程
    δ0.2830.2100.007 58
    μ5. 336×103261.0002.020
    θ3.757×10−55.831×10−51.425×10−6
    伽马
    退化过程
    δ1.0180.4450.011 9
    η83.47013.9200.258
    γ66.56023.5800.612
    逆高斯
    退化过程
    α0.027 40.1830.008 77
    δ8.439×10−40.02278.463×10−4
    λ4.613×1093.385×1091.534×108
    下载: 导出CSV

    表  4  融合模型参数估计结果

    Table  4.   Results of fusion model parameter estimation

    参数 均值 标准差 MCMC误差 95%置信区间
    ω(样本1) 19.3 5.87 0.06595 [11.09,33.54]
    ω(样本2) 0.6146 0.2624 0.003225 [0.2946,1.2570]
    ω(样本3) 2.366 0.8213 0.007614 [1.238,4.403]
    Rω(样本1) 0.05616 0.01554 1.677×10−4 [0.02981,0.09016]
    Rω(样本2) 1.871 0.6728 0.00691 [0.7952,3.3940]
    Rω(样本3) 0.4692 0.1487 0.001214 [0.2271,0.8075]
    μ(样本1) 3.286×10−4 1.32×10−4 9.051×10−7 [6.723×10−5,5.883×10−4]
    μ(样本2) 1.252×10−4 2.279×10−5 1.668×10−7 [8.0×10−5,1.702×10−4]
    μ(样本3) 1.922×10−4 4.661×10−5 2.767×10−7 [9.719×10−5,2.848×10−4]
    δ 0.2314 0.1796 0.002692 [0.02694,0.70420]
    γ 1.242 0.7701 0.01149 [0.2735,3.1560]
    θ 2.284 1.672 0.01465 [0.334,6.557]
    下载: 导出CSV
  • [1] 李丽, 张根保. “高档数控机床的高端制造模式” (二): 国产数控机床的竞争格局研究[J]. 计算机集成制造系统, 2023, 29(4): 1346-1356.

    LI L, ZHANG G B. The competitive pattern of domestic CNC machine tools[J]. Computer Integrated Manufacturing Systems, 2023, 29(4): 1346-1356 (in Chinese).
    [2] CASTANEDO F. A review of data fusion techniques[J]. The Scientific World Journal, 2013, 2013(1): 704504. doi: 10.1155/2013/704504
    [3] LO D, GOUBRAN R A, DANSEREAU R M. Robust joint audio-video talker localization in video conferencing using reliability information-II: Bayesian network fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(4): 1541-1547. doi: 10.1109/TIM.2004.851071
    [4] 司景萍, 马继昌, 牛家骅, 等. 基于模糊神经网络的智能故障诊断专家系统[J]. 振动与冲击, 2017, 36(4): 164-171.

    SI J P, MA J C, NIU J H, et al. An intelligent fault diagnosis expert system based on fuzzy neural network[J]. Journal of Vibration and Shock, 2017, 36(4): 164-171 (in Chinese).
    [5] MAJUMDER S, PRATIHAR D K. Multi-sensors data fusion through fuzzy clustering and predictive tools[J]. Expert Systems with Applications, 2018, 107: 165-172. doi: 10.1016/j.eswa.2018.04.026
    [6] CHEN Y, MA S, WEN X. Application of natural gradient algorithm for the aircraft engine vibration signal separation and fault diagnosis[J]. Journal of Convergence Information Technology, 2012, 7(12): 382-388. doi: 10.4156/jcit.vol7.issue12.43
    [7] 孙伟超, 李文海, 李文峰. 融合粗糙集与D-S证据理论的航空装备故障诊断[J]. 北京航空航天大学学报, 2015, 41(10): 1902-1909.

    SUN W C, LI W H, LI W F. Avionic devices fault diagnosis based on fusion method of rough set and D-S theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1902-1909 (in Chinese).
    [8] INSUA D R, RUGGERI F, SOYER R, et al. Advances in Bayesian decision making in reliability[J]. European Journal of Operational Research, 2020, 282(1): 1-18. doi: 10.1016/j.ejor.2019.03.018
    [9] JEFFREYS H. Theory of probability[M]. 3d ed. Oxford: Clarendon Press, 1961.
    [10] LITTLEWOOD B, VERRALL J L. A Bayesian reliability model with a stochastically monotone failure rate[J]. IEEE Transactions on Reliability, 1974, R-23(2): 108-114. doi: 10.1109/TR.1974.5215217
    [11] MARTZ H F, WALLER R A. Bayesian reliability analysis of complex series/parallel systems of binomial subsystems and components[J]. Technometrics, 1990, 32(4): 407-416. doi: 10.1080/00401706.1990.10484727
    [12] PIEVATOLO A, RUGGERI F. Bayesian reliability analysis of complex repairable systems[J]. Applied Stochastic Models in Business and Industry, 2004, 20(3): 253-264. doi: 10.1002/asmb.522
    [13] ZAIDI A, OULD BOUAMAMA B, TAGINA M. Bayesian reliability models of Weibull systems: state of the art[J]. International Journal of Applied Mathematics and Computer Science, 2012, 22(3): 585-600. doi: 10.2478/v10006-012-0045-2
    [14] SIMON C, WEBER P, EVSUKOFF A. Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis[J]. Reliability Engineering & System Safety, 2008, 93(7): 950-963.
    [15] SOROUSH H, RASOULI V, TOKHMECHI B. A combined Bayesian–wavelet–data fusion approach for borehole enlargement identification in carbonates[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 996-1005. doi: 10.1016/j.ijrmms.2010.06.015
    [16] 徐兵, 姜艳青, 周志杰, 等. 基于贝叶斯估计的超声红外复合测距系统[J]. 解放军理工大学学报(自然科学版), 2013, 14(4): 365-371.

    XU B, JIANG Y Q, ZHOU Z J, et al. Ultrasonic infrared composite range system based on Bayesian estimation[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(4): 365-371 (in Chinese).
    [17] 彭卫文, 黄洪钟, 李彦锋, 等. 基于数据融合的加工中心功能铣头贝叶斯可靠性评估[J]. 机械工程学报, 2014, 50(6): 185-191. doi: 10.3901/JME.2014.06.185

    PENG W W, HUANG H Z, LI Y F, et al. Bayesian information fusion method for reliability assessment of milling head[J]. Journal of Mechanical Engineering, 2014, 50(6): 185-191 (in Chinese). doi: 10.3901/JME.2014.06.185
    [18] 陈红霞, 张俊峰, 马爱博, 等. 基于改进贝叶斯的重型数控机床可靠性研究[J]. 电子科技大学学报, 2023, 52(1): 140-145. doi: 10.12178/1001-0548.2022153

    CHEN H X, ZHANG J F, MA A B, et al. Reliability research of heavy CNC machine tools based on improved Bayesian[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(1): 140-145 (in Chinese). doi: 10.12178/1001-0548.2022153
    [19] GUO J Y, LI Y F, PENG W W, et al. Bayesian information fusion method for reliability analysis with failure-time data and degradation data[J]. Quality and Reliability Engineering International, 2022, 38(4): 1944-1956. doi: 10.1002/qre.3065
    [20] ZHAO Q, JIA X, CHENG Z J, et al. Bayesian estimation of residual life for weibull-distributed components of on-orbit satellites based on multi-source information fusion[J]. Applied Sciences, 2019, 9(15): 3017. doi: 10.3390/app9153017
    [21] CHEN Z, XIA T B, LI Y P, et al. Random-effect models for degradation analysis based on nonlinear tweedie exponential-dispersion processes[J]. IEEE Transactions on Reliability, 2022, 71(1): 47-62. doi: 10.1109/TR.2021.3107050
    [22] 杨家鑫, 唐圣金, 李良, 等. 基于隐含非线性维纳退化过程的剩余寿命预测[J]. 北京航空航天大学学报, 2024, 50(1): 328-340.

    YANG J X, TANG S J, LI L, et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 328-340(in Chinese).
    [23] WANG X. Wiener processes with random effects for degradation data[J]. Journal of Multivariate Analysis, 2010, 101(2): 340-351. doi: 10.1016/j.jmva.2008.12.007
    [24] PENG C Y. Inverse Gaussian processes with random effects and explanatory variables for degradation data[J]. Technometrics, 2015, 57(1): 100-111. doi: 10.1080/00401706.2013.879077
    [25] EDWARDS K D, KONOLD T R. Impact of informative priors on model fit indices in Bayesian confirmatory factor analysis[J]. Structural Equation Modeling: A Multidisciplinary Journal, 2023, 30(2): 272-283. doi: 10.1080/10705511.2022.2126359
    [26] BARIBAULT B, COLLINS A G E. Troubleshooting Bayesian cognitive models[J]. Psychological Methods, 2023: 10.1037/met0000554.
    [27] AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723. doi: 10.1109/TAC.1974.1100705
    [28] SCHWARZ G. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2): 461-464.
    [29] PANDEY A, SINGH A, GARDONI P. A review of Information Field Theory for Bayesian inference of random fields[J]. Structural Safety, 2022, 99: 102225. doi: 10.1016/j.strusafe.2022.102225
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  63
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-22
  • 录用日期:  2023-08-30
  • 网络出版日期:  2023-10-11
  • 整期出版日期:  2025-02-28

目录

    /

    返回文章
    返回
    常见问答