-
摘要:
为了精确评估数控系统伺服驱动单元的可靠性,提出了一种多阶段退化数据融合的可靠性建模方法。通过分析多种退化过程模型,针对不同伺服驱动单元之间存在的个体差异特点,引入随机效应并给出了考虑个体差异的可靠性模型建立方案;采用贝叶斯方法通过考虑多种退化过程,将不同退化的数据进行融合,建立了多阶段退化数据融合的伺服驱动单元可靠性模型,并采用马尔可夫链蒙特卡罗方法完成模型参数估计;在实验室环境下搭建伺服驱动单元加载测试平台,采集实验数据验证了模型的有效性。
Abstract:In order to accurately evaluate the reliability of the servo drive unit of a computer numerical control (CNC) system, a reliability modeling method with multi-stage degradation data fusion was proposed. Firstly, by analyzing multiple degradation process models, random effects were introduced, and a reliability model building scheme considering individual differences was given for the characteristics of individual differences existing between different servo drive units. Then, a Bayesian approach was adopted to fuse different degradation data by considering multiple degradation processes, and a reliability model of servo drive units with multi-stage degradation data fusion was established. Moreover, a Markov chain Monte Carlo (MCMC) method was used to complete the model parameter estimation. Finally, a servo drive unit loading test platform was built in the laboratory environment to collect experimental data and verify the validity of the model.
-
Key words:
- degradation process /
- data fusion /
- Bayesian approach /
- servo drive unit /
- reliability modeling
-
表 1 伺服驱动单元初期试验退化数据
Table 1. Initial test degradation data of servo drive unit
时间/h 水平退化/g 竖直退化/g 时间/h 水平退化/g 竖直退化/g 时间/h 水平退化/g 竖直退化/g 0 0 0 0 0 0 0 0 0 493 0.080 0.095 574 0.053 0.059 488 0.058 0.053 806 0.125 0.150 996 0.090 0.101 958 0.116 0.103 1 218 0.190 0.227 1 554 0.143 0.156 1 439 0.169 0.155 1 544 0.246 0.276 1 972 0.184 0.202 2 044 0.240 0.222 1 998 0.320 0.396 2 498 0.234 0.257 2 399 0.282 0.261 2 685 0.446 0.556 3 115 0.294 0.323 2 961 0.353 0.327 3 279 0.569 0.696 3 529 0.338 0.370 3 362 0.405 0.377 表 2 伺服驱动单元后期试验退化数据
Table 2. Post-test degradation data of servo drive unit
时间/h 水平退化/g 竖直退化/g 时间/h 水平退化/g 竖直退化/g 时间/h 水平退化/g 竖直退化/g 5 000 1.045 1.346 5 000 0.512 0.570 5 000 0.666 0.614 5 215 1.113 1.466 5 226 0.542 0.609 5 246 0.706 0.660 5 434 1.214 1.580 5 518 0.586 0.662 5 517 0.760 0.706 5 742 1.361 1.785 5 748 0.619 0.704 5 693 0.796 0.741 5 998 1.492 1.943 6 021 0.664 0.759 5 914 0.849 0.785 6 259 1.632 2.128 6 256 0.702 0.808 6 285 0.941 0.865 6 517 1.794 2.346 6 543 0.749 0.871 6 514 0.999 0.922 6 698 1.911 2.492 6 796 0.799 0.933 6 738 1.069 0.977 6 979 2.102 2.750 7 081 0.865 1.010 7 002 1.148 1.056 7 284 2.333 3.029 7 286 0.914 1.085 7 240 1.244 1.140 7 518 2.529 3.303 7 518 0.971 1.173 7 532 1.368 1.261 7 752 2.737 3.615 7 693 1.017 1.236 7 733 1.469 1.353 8048 2.999 4.003 7 978 1.131 1.389 7 969 1.640 1.482 8244 3.222 4.293 8 258 1.258 1.582 8 259 1.899 1.700 8517 3.534 4.780 8 488 1.384 1.811 8 529 2.196 1.987 表 3 3种模型的相关参数估计结果
Table 3. Three model parameter estimation results
模型 参数 均值 标准差 MCMC误差 维纳
退化过程δ 0.283 0.210 0.007 58 μ 5. 336×103 261.000 2.020 θ 3.757×10−5 5.831×10−5 1.425×10−6 伽马
退化过程δ 1.018 0.445 0.011 9 η 83.470 13.920 0.258 γ 66.560 23.580 0.612 逆高斯
退化过程α 0.027 4 0.183 0.008 77 δ 8.439×10−4 0.0227 8.463×10−4 λ 4.613×109 3.385×109 1.534×108 表 4 融合模型参数估计结果
Table 4. Results of fusion model parameter estimation
参数 均值 标准差 MCMC误差 95%置信区间 ω(样本1) 19.3 5.87 0.06595 [11.09,33.54] ω(样本2) 0.6146 0.2624 0.003225 [ 0.2946 ,1.2570 ]ω(样本3) 2.366 0.8213 0.007614 [1.238,4.403] Rω(样本1) 0.05616 0.01554 1.677×10−4 [ 0.02981 ,0.09016 ]Rω(样本2) 1.871 0.6728 0.00691 [ 0.7952 ,3.3940 ]Rω(样本3) 0.4692 0.1487 0.001214 [ 0.2271 ,0.8075 ]μ(样本1) 3.286×10−4 1.32×10−4 9.051×10−7 [6.723×10−5,5.883×10−4] μ(样本2) 1.252×10−4 2.279×10−5 1.668×10−7 [8.0×10−5,1.702×10−4] μ(样本3) 1.922×10−4 4.661×10−5 2.767×10−7 [9.719×10−5,2.848×10−4] δ 0.2314 0.1796 0.002692 [ 0.02694 ,0.70420 ]γ 1.242 0.7701 0.01149 [ 0.2735 ,3.1560 ]θ 2.284 1.672 0.01465 [0.334,6.557] -
[1] 李丽, 张根保. “高档数控机床的高端制造模式” (二): 国产数控机床的竞争格局研究[J]. 计算机集成制造系统, 2023, 29(4): 1346-1356.LI L, ZHANG G B. The competitive pattern of domestic CNC machine tools[J]. Computer Integrated Manufacturing Systems, 2023, 29(4): 1346-1356 (in Chinese). [2] CASTANEDO F. A review of data fusion techniques[J]. The Scientific World Journal, 2013, 2013(1): 704504. doi: 10.1155/2013/704504 [3] LO D, GOUBRAN R A, DANSEREAU R M. Robust joint audio-video talker localization in video conferencing using reliability information-II: Bayesian network fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(4): 1541-1547. doi: 10.1109/TIM.2004.851071 [4] 司景萍, 马继昌, 牛家骅, 等. 基于模糊神经网络的智能故障诊断专家系统[J]. 振动与冲击, 2017, 36(4): 164-171.SI J P, MA J C, NIU J H, et al. An intelligent fault diagnosis expert system based on fuzzy neural network[J]. Journal of Vibration and Shock, 2017, 36(4): 164-171 (in Chinese). [5] MAJUMDER S, PRATIHAR D K. Multi-sensors data fusion through fuzzy clustering and predictive tools[J]. Expert Systems with Applications, 2018, 107: 165-172. doi: 10.1016/j.eswa.2018.04.026 [6] CHEN Y, MA S, WEN X. Application of natural gradient algorithm for the aircraft engine vibration signal separation and fault diagnosis[J]. Journal of Convergence Information Technology, 2012, 7(12): 382-388. doi: 10.4156/jcit.vol7.issue12.43 [7] 孙伟超, 李文海, 李文峰. 融合粗糙集与D-S证据理论的航空装备故障诊断[J]. 北京航空航天大学学报, 2015, 41(10): 1902-1909.SUN W C, LI W H, LI W F. Avionic devices fault diagnosis based on fusion method of rough set and D-S theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1902-1909 (in Chinese). [8] INSUA D R, RUGGERI F, SOYER R, et al. Advances in Bayesian decision making in reliability[J]. European Journal of Operational Research, 2020, 282(1): 1-18. doi: 10.1016/j.ejor.2019.03.018 [9] JEFFREYS H. Theory of probability[M]. 3d ed. Oxford: Clarendon Press, 1961. [10] LITTLEWOOD B, VERRALL J L. A Bayesian reliability model with a stochastically monotone failure rate[J]. IEEE Transactions on Reliability, 1974, R-23(2): 108-114. doi: 10.1109/TR.1974.5215217 [11] MARTZ H F, WALLER R A. Bayesian reliability analysis of complex series/parallel systems of binomial subsystems and components[J]. Technometrics, 1990, 32(4): 407-416. doi: 10.1080/00401706.1990.10484727 [12] PIEVATOLO A, RUGGERI F. Bayesian reliability analysis of complex repairable systems[J]. Applied Stochastic Models in Business and Industry, 2004, 20(3): 253-264. doi: 10.1002/asmb.522 [13] ZAIDI A, OULD BOUAMAMA B, TAGINA M. Bayesian reliability models of Weibull systems: state of the art[J]. International Journal of Applied Mathematics and Computer Science, 2012, 22(3): 585-600. doi: 10.2478/v10006-012-0045-2 [14] SIMON C, WEBER P, EVSUKOFF A. Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis[J]. Reliability Engineering & System Safety, 2008, 93(7): 950-963. [15] SOROUSH H, RASOULI V, TOKHMECHI B. A combined Bayesian–wavelet–data fusion approach for borehole enlargement identification in carbonates[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 996-1005. doi: 10.1016/j.ijrmms.2010.06.015 [16] 徐兵, 姜艳青, 周志杰, 等. 基于贝叶斯估计的超声红外复合测距系统[J]. 解放军理工大学学报(自然科学版), 2013, 14(4): 365-371.XU B, JIANG Y Q, ZHOU Z J, et al. Ultrasonic infrared composite range system based on Bayesian estimation[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(4): 365-371 (in Chinese). [17] 彭卫文, 黄洪钟, 李彦锋, 等. 基于数据融合的加工中心功能铣头贝叶斯可靠性评估[J]. 机械工程学报, 2014, 50(6): 185-191. doi: 10.3901/JME.2014.06.185PENG W W, HUANG H Z, LI Y F, et al. Bayesian information fusion method for reliability assessment of milling head[J]. Journal of Mechanical Engineering, 2014, 50(6): 185-191 (in Chinese). doi: 10.3901/JME.2014.06.185 [18] 陈红霞, 张俊峰, 马爱博, 等. 基于改进贝叶斯的重型数控机床可靠性研究[J]. 电子科技大学学报, 2023, 52(1): 140-145. doi: 10.12178/1001-0548.2022153CHEN H X, ZHANG J F, MA A B, et al. Reliability research of heavy CNC machine tools based on improved Bayesian[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(1): 140-145 (in Chinese). doi: 10.12178/1001-0548.2022153 [19] GUO J Y, LI Y F, PENG W W, et al. Bayesian information fusion method for reliability analysis with failure-time data and degradation data[J]. Quality and Reliability Engineering International, 2022, 38(4): 1944-1956. doi: 10.1002/qre.3065 [20] ZHAO Q, JIA X, CHENG Z J, et al. Bayesian estimation of residual life for weibull-distributed components of on-orbit satellites based on multi-source information fusion[J]. Applied Sciences, 2019, 9(15): 3017. doi: 10.3390/app9153017 [21] CHEN Z, XIA T B, LI Y P, et al. Random-effect models for degradation analysis based on nonlinear tweedie exponential-dispersion processes[J]. IEEE Transactions on Reliability, 2022, 71(1): 47-62. doi: 10.1109/TR.2021.3107050 [22] 杨家鑫, 唐圣金, 李良, 等. 基于隐含非线性维纳退化过程的剩余寿命预测[J]. 北京航空航天大学学报, 2024, 50(1): 328-340.YANG J X, TANG S J, LI L, et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 328-340(in Chinese). [23] WANG X. Wiener processes with random effects for degradation data[J]. Journal of Multivariate Analysis, 2010, 101(2): 340-351. doi: 10.1016/j.jmva.2008.12.007 [24] PENG C Y. Inverse Gaussian processes with random effects and explanatory variables for degradation data[J]. Technometrics, 2015, 57(1): 100-111. doi: 10.1080/00401706.2013.879077 [25] EDWARDS K D, KONOLD T R. Impact of informative priors on model fit indices in Bayesian confirmatory factor analysis[J]. Structural Equation Modeling: A Multidisciplinary Journal, 2023, 30(2): 272-283. doi: 10.1080/10705511.2022.2126359 [26] BARIBAULT B, COLLINS A G E. Troubleshooting Bayesian cognitive models[J]. Psychological Methods, 2023: 10.1037/met0000554. [27] AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723. doi: 10.1109/TAC.1974.1100705 [28] SCHWARZ G. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2): 461-464. [29] PANDEY A, SINGH A, GARDONI P. A review of Information Field Theory for Bayesian inference of random fields[J]. Structural Safety, 2022, 99: 102225. doi: 10.1016/j.strusafe.2022.102225 -