-
摘要:
为提高翼身融合(BWB)布局无人机(UAVs)总体方案优化设计效率,根据翼身融合布局无人机外形和性能特点,建立了适用于概念设计阶段无人机总体方案的多学科综合分析模型、综合评价模型和优化模型,并开发了相应工具。采用数值分析和工程方法相结合,完成翼身融合布局无人机总体方案的几何、质量、气动和隐身特性分析。采用改进的逼近理想解排序法(TOPSIS),从无人机的装载能力、经济性和适应性角度出发,建立综合评价模型。以多个无人机方案为算例,验证了分析模型的合理性。利用可并行的子集模拟优化算法,以巡航升阻比最大和前向雷达散射截面积(RCS)最小为目标完成传统多目标优化,以竞争力最强为目标完成基于综合评价的方案优化。以多目标优化过程产生的全部方案为基础完成参数相关性分析,验证展长、后掠角和扭转角对气动和隐身特性的影响。最终的多目标优化方案RCS降低了41.6%,巡航升阻比提高了3.5%;综合评价优化方案的竞争力得分提高了44.0%。
Abstract:To improve the overall scheme optimization efficiency of blended wing body (BWB) unmanned aerial vehicles (UAVs), a model involving multi-disciplinary analysis, comprehensive evaluation, and optimization suitable for the overall scheme of UAVs in the conceptual design stage was established, in consideration of the geometric and performance characteristics of BWB UAVs. Additionally, corresponding tools were developed. The analysis of geometry, mass, aerodynamics, and stealth characteristics of the BWB UAVs in the overall scheme was performed by combining numerical analysis with engineering methods. An improved TOPSIS method was adopted to establish a comprehensive evaluation model concerning payload capacity, economy, and adaptability of UAVs. The rationality of the analysis model was verified by using several UAV schemes as calculation cases. A parallelizable subset simulation optimization algorithm was utilized to perform a traditional multi-objective optimization with the objectives of maximizing the cruise lift-to-drag ratio and minimizing the forward radar cross section (RCS), and scheme optimization based on the comprehensive evaluation was achieved with the goal of realizing the optimal competitiveness. Based on all schemes generated during the multi-objective optimization process, a parameter correlation analysis was completed, verifying the impact of wingspan, sweep angle, and twist angle on aerodynamic and stealth characteristics. The final multi-objective optimization scheme achieves a 41.6% reduction in RCS and a 3.5% increase in cruise lift-to-drag ratio. The competitiveness score of the optimization scheme based on comprehensive evaluation was improved by 44.0%.
-
Key words:
- blended-wing-body /
- UAV /
- conceptual design /
- comprehensive evaluation /
- optimization
-
表 1 理想解
Table 1. Ideal solutions
理想解 载荷质量/kg 总质量/kg (L/D)cru σRCS/m2 正 45 150 19 0.003 负 20 200 15 0.010 表 2 判断矩阵随机一致性指标值
Table 2. Random index values of judging matrix
n IRI n IRI 3 0.52 7 1.36 4 0.89 8 1.41 5 1.12 9 1.46 6 1.26 10 1.49 表 3 几何参数
Table 3. Geometric parameters
部件 半展长/m 后掠角/(°) 梢根比 上反角/(°) 中央翼 0.45 60.0 0.71 0 內翼内段 0.45 60.0 0.55 0 內翼外段 0.23 37.3 0.77 0 外翼 2.10 37.3 0.59 0 小翼 0.27 69.0 0.60 68.5 表 4 特征参数
Table 4. Characteristic parameters
模型 参考面积/m2 平均气动弦长/m 浸润面积/m2 本文 7.04 1.49 16.67 文献[20] 6.80 16.28 注:参考面积偏差、浸润面积偏差分别为3.5%、2.4%。 表 5 质量分析结果
Table 5. Results of mass analysis
kg 模型 空机结构
质量推进系统
质量系统设备
质量载荷
质量燃油
质量起飞
总质量本文 69.64 14.55 17.99 35.0 31.25 168.43 文献[20] 110.79 35.0 31.25 177.03 注:推进系统质量偏差、载荷质量偏差、燃油质量偏差、起飞总质量偏差分别为110.79%、35.0%、31.25%、177.03%。 表 6 综合评价参数值
Table 6. Parameters for comprehensive evaluation
参数 载荷质量 总质量 σRCS (L/D)cru 指标权重 0.459 8 0.131 5 0.121 6 0.287 1 正理想解 0.952 6 0.952 6 0.952 6 0.952 6 负理想解 0.047 4 0.047 4 0.047 4 0.047 4 评价对象 0.645 7 0.687 5 0.457 2 0.599 9 表 7 方案1几何参数
Table 7. Geometric parameters for scheme 1
部件 半展长/m 后掠角/(°) 梢根比 上反角/(°) 扭转角/(°) 中央翼 0.60 59.70 0.741 0 2.570 內翼内段 0.59 59.70 0.657 0 0.420 內翼外段 0.45 29.96 0.916 0 −0.073 外翼 4.06 29.96 0.173 0 −0.657 小翼 0.60 57.78 0.341 60.02 0 表 8 方案1分析结果
Table 8. Analysis results for scheme 1
模型 参考面积/m2 起飞质量/kg (L/D)cru σRCS/m2 本文 19.4 2 076.38 19.10 0.004 5 文献[23] 20.0 2 000.00 19.88 0.001 4 偏差/% −3.0 3.8 −3.9 221 表 9 方案2分析结果
Table 9. Analysis results for scheme 2
模型 参考面积/m2 起飞质量/kg (L/D)cru σRCS/m2 本文 19.0 2 070.87 18.13 0.004 2 文献[23] 20.0 2 000.00 18.34 0.002 3 偏差/% −5.0 3.5 −1.1 82.6 表 10 方案3分析结果
Table 10. Analysis results for scheme 3
模型 参考面积/m2 起飞质量/kg (L/D)cru σRCS/m2 本文 19.48 2 121.5 17.11 0.004 4 文献[23] 20.00 2 000.0 18.38 0.002 4 偏差/% −2.6 6.1 −6.9 83.3 表 11 初始方案与Pareto解集对比
Table 11. Comparison between initial scheme and Pareto solution set
方案 σRCS/m2 (L/D)cru 初始 0.006 70 17.27 方案1 0.003 87 17.53 方案2 0.003 91 17.88 方案3 0.004 86 18.12 方案4 0.005 19 18.69 表 12 初始方案与优化方案对比
Table 12. Comparison between initial scheme and optimization design
指标 初始 优化后 机身半展长/m 0.45 0.36 机身前缘后掠角/(°) 60.0 55.1 外翼半展长/m 2.10 1.81 外翼前缘后掠角/(°) 37.3 36.50 外翼梢根比 0.59 0.54 外翼扭转角/(°) 0 −0.24 载荷质量/kg 35.00 41.31 总质量/kg 168.95 164.74 σRCS/m2 0.006 7 0.004 4 (L/D)cru 17.40 18.32 竞争力 0.624 4 0.899 2 -
[1] 王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 7-35.WANG G, ZHANG B Q, ZHANG M H, et al. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 7-35(in Chinese). [2] 蒋瑾, 钟伯文, 符松. 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2016, 37(1): 278-289.JIANG J, ZHONG B W, FU S. Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 278-289(in Chinese). [3] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25. doi: 10.2514/1.9084 [4] WAKAYAMA S, KROO I. The challenge and promise of blended-wing-body optimization[C]//Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Virginia: AIAA, 1998: 4736. [5] WAKAYAMA S. Blended-wing-body optimization problem setup[C]//Proceedings of the 8th Symposium on Multidisciplinary Analysis and Optimization. Virginia: AIAA, 2000: 4740. [6] SUDER K. Overview of the NASA environmentally responsible aviation project’s propulsion technology portfolio[C]//Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Virginia: AIAA, 2012: 4038. [7] HILEMAN J, SPAKOVSZKY Z, DRELA M, et al. Airframe design for “silent aircraft” [C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Virginia: AIAA, 2007: 453. [8] BOLSUNOVSKY A L, BUZOVERYA N P, GUREVICH B I, et al. Flying wing—problems and decisions[J]. Aircraft Design, 2001, 4(4): 193-219. doi: 10.1016/S1369-8869(01)00005-2 [9] LI P F, ZHANG B Q, CHEN Y C, et al. Aerodynamic design methodology for blended wing body transport[J]. Chinese Journal of Aeronautics, 2012, 25(4): 508-516. doi: 10.1016/S1000-9361(11)60414-7 [10] 刘晓静, 吴江浩, 张曙光. 250座级翼身融合布局客机气动设计与优化[J]. 空气动力学学报, 2011, 29(1): 78-84. doi: 10.3969/j.issn.0258-1825.2011.01.013LIU X J, WU J H, ZHANG S G. Aerodynamic design and optimization of the blended wing body aircraft for 250 passengers[J]. Acta Aerodynamica Sinica, 2011, 29(1): 78-84(in Chinese). doi: 10.3969/j.issn.0258-1825.2011.01.013 [11] 钟园, 陈勇, 陈真利, 等. 翼身融合布局低速验证机前缘缝翼设计[J]. 航空学报, 2019, 40(9): 114-124.ZHONG Y, CHEN Y, CHEN Z L, et al. Design of slat of blended-wing-body low speed testing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 114-124(in Chinese). [12] PEIGIN S, EPSTEIN B. Computational fluid dynamics driven optimization of blended wing body aircraft[J]. AIAA Journal, 2006, 44(11): 2736-2745. doi: 10.2514/1.19757 [13] 李路路, 张彬乾, 李沛峰, 等. 大型客机无尾布局航向组合舵面控制技术研究[J]. 飞行力学, 2013, 31(5): 450-454. doi: 10.3969/j.issn.1002-0853.2013.05.016LI L L, ZHANG B Q, LI P F, et al. Research on control technology of combined control surface for large tailless civil aircraft[J]. Flight Dynamics, 2013, 31(5): 450-454(in Chinese). doi: 10.3969/j.issn.1002-0853.2013.05.016 [14] 张曙光, 陆艳辉, 巩磊, 等. 250座级翼身融合无尾布局客机操稳特性设计研究[J]. 航空学报, 2011, 32(10): 1761-1769.ZHANG S G, LU Y H, GONG L, et al. Research on design of stability and control of a 250-seat tailless blended-wing-body civil transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1761-1769(in Chinese). [15] ZHU W S, FAN Z W, YU X Q. Structural mass prediction in conceptual design of blended-wing-body aircraft[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2455-2465. doi: 10.1016/j.cja.2019.08.003 [16] 张永杰, 吴莹莹, 赵书旺, 等. 翼身融合布局民机非圆截面机身结构设计研究综述[J]. 航空学报, 2019, 40(9): 157-175.ZHANG Y J, WU Y Y, ZHAO S W, et al. Review of non-circular cross-section fuselage structure design research on blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 157-175(in Chinese). [17] 赵志高, 张曙光. BWB客机经济性相关设计参数的影响分析[J]. 北京航空航天大学学报, 2011, 37(8): 937-942.ZHAO Z G, ZHANG S G. Analysis of effects of BWB airliner design parameters on its economic profitability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8): 937-942(in Chinese). [18] 赵振山, 冯剑, 苗树明, 等. 基于数值模拟的翼身融合布局飞机上悬式发动机布置技术[J]. 航空学报, 2019, 40(9): 125-133.ZHAO Z S, FENG J, MIAO S M, et al. Blended-wing-body aircraft overhanging engine layout technology based on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 125-133(in Chinese). [19] 潘立军, 吴大卫, 谭兆光, 等. 基于适航符合性的翼身融合布局客机客舱布置设计[J]. 航空学报, 2019, 40(9): 57-65.PAN L J, WU D W, TAN Z G, et al. Cabin layout design for BWB civil aircraft based on airworthiness compliance[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 57-65(in Chinese). [20] PANAGIOTOU P, FOTIADIS-KARRAS S, YAKINTHOS K. Conceptual design of a Blended Wing Body MALE UAV[J]. Aerospace Science and Technology, 2018, 73: 32-47. doi: 10.1016/j.ast.2017.11.032 [21] KAPSALIS S, PANAGIOTOU P, YAKINTHOS K. CFD-aided optimization of a tactical Blended-Wing-Body UAV platform using the Taguchi method[J]. Aerospace Science and Technology, 2021, 108: 106395. doi: 10.1016/j.ast.2020.106395 [22] 王荣, 闫溟, 白鹏, 等. 飞翼无人机平面外形气动隐身优化设计[J]. 航空学报, 2017, 38(S1): 78-85.WANG R , YAN M , BAI P , et al. Optimization design of aerodynamics and stealth for a flying-wing UAV planform[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 78-85(in Chinese). [23] 邓海强, 余雄庆. 亚声速翼身融合无人机概念外形参数优化[J]. 航空学报, 2014, 35(5): 1200-1208.DENG H Q, YU X Q. Configuration optimization of subsonic blended wing body UAV conceptual design[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1200-1208(in Chinese). [24] 索欣诗. 翼身融合布局大型客机总体方案综合分析评价与优化[D]. 南京: 南京航空航天大学, 2017: 83-87.SUO X S. Comprehensive analysis, evaluation and optimization of the overall scheme of large passenger aircraft with wing-body fusion layout[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 83-87(in Chinese). [25] HOWE D. Blended wing body airframe mass prediction[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2001, 215(6): 319-331. doi: 10.1243/0954410011533329 [26] CARMICHAEL R, ERICKSON L. PAN AIR - A higher order panel method for predicting subsonic or supersonic linear potential flows about arbitrary configurations[C]//Proceedings pf the 14th Fluid and Plasma Dynamics Conference. Virginia: AIAA, 1981: 1255. [27] 李沙浪, 雷明. 基于TOPSIS的省级低碳经济发展评价及其空间面板计量分析[J]. 中国管理科学, 2014, 22(S1): 741-748.LI S L, LEI M. TOPSIS based assessment of low carbon economy development and spatial econometric analysis[J]. Chinese Journal of Management Science, 2014, 22(S1): 741-748(in Chinese). [28] 董彦非, 王礼沅, 王卓健, 等. 基于空战模式和AHP法的空战效能评估模型[J]. 系统工程与电子技术, 2006, 28(6): 885-888. doi: 10.3321/j.issn:1001-506X.2006.06.028DONG Y F, WANG L Y, WANG Z J, et al. Air combat effectiveness assessment model based on operational pattern and analytic hierarchy process[J]. Systems Engineering and Electronics, 2006, 28(6): 885-888(in Chinese). doi: 10.3321/j.issn:1001-506X.2006.06.028 [29] 李宴喜, 陶志. 层次分析法中判断矩阵的群组综合构造方法[J]. 沈阳师范大学学报(自然科学版), 2002, 20(2): 86-90.LI Y X, TAO Z. Structure method for judging matrix of group in the AHP[J]. Journal of Shenyang Normal University(Natural Science), 2002, 20(2): 86-90(in Chinese). [30] 索欣诗, 余雄庆. 飞机总体参数优化的可视化技术[J]. 机械科学与技术, 2016, 35(12): 1961-1966.SUO X S, YU X Q. Visualization for aircraft conceptual design optimization[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(12): 1961-1966(in Chinese). [31] SUO X S, YU X Q, LI H S. Subset simulation for multi-objective optimization[J]. Applied Mathematical Modelling, 2017, 44: 425-445. doi: 10.1016/j.apm.2017.02.005 -