留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双参数退化型新研产品质保期设计与优化

高帅 李艳宏 孙富强

高帅,李艳宏,孙富强. 双参数退化型新研产品质保期设计与优化[J]. 北京航空航天大学学报,2025,51(6):2137-2147 doi: 10.13700/j.bh.1001-5965.2023.0316
引用本文: 高帅,李艳宏,孙富强. 双参数退化型新研产品质保期设计与优化[J]. 北京航空航天大学学报,2025,51(6):2137-2147 doi: 10.13700/j.bh.1001-5965.2023.0316
GAO S,LI Y H,SUN F Q. Design and optimization of warranty period of new products with two-parameter degradation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2137-2147 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0316
Citation: GAO S,LI Y H,SUN F Q. Design and optimization of warranty period of new products with two-parameter degradation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2137-2147 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0316

双参数退化型新研产品质保期设计与优化

doi: 10.13700/j.bh.1001-5965.2023.0316
基金项目: 

重点实验室稳定支持项目(WDZC20220101)

详细信息
    通讯作者:

    E-mail:sunfuqiang@buaa.edu.cn

  • 中图分类号: V57;TB114.3

Design and optimization of warranty period of new products with two-parameter degradation

Funds: 

Stable Supporting Fund of Science &Technology on Reliability and Environmental Engineering Laboratory (WDZC20220101)

More Information
  • 摘要:

    由于新研产品缺乏外场故障数据和历史保修索赔记录,难以开展科学合理的质保成本预测及质保期优化。考虑到产品不同性能参数退化过程之间的相互影响,提出了一种基于Copula理论的双参数退化型新研产品质保期设计与优化方法。根据实验室加速退化试验数据建立产品单参数性能退化模型,采用Copula方法量化退化过程之间的相关性,同时考虑产品在外场的动态运行环境,给出其外场可靠性模型。采用维修改善因子模型量化维修过程中的不完美维修情形,并基于蒙特卡罗仿真计算产品的预计失效数,建立质保成本模型。在此基础上,利用Glickman-Berger模型量化质保期对产品销售量的影响,构建以制造商利润最大化为目标的质保期优化模型。以某型电子组件为例,开展产品质保期设计优化与敏感性分析,验证了模型的有效性和适用性。

     

  • 图 1  两性能参数退化过程失效机制

    Figure 1.  Two performance parameter degradation process failure mechanism

    图 2  两性能退化型产品不完美维修策略

    Figure 2.  Imperfect maintenance strategy for products with two performance parameter degradation

    图 3  两性能退化型产品的预计失效数仿真算法流程图

    Figure 3.  Flow chart of simulation algorithm for predicted number of failures of products with two performance parameter degradation

    图 4  性能参数功率的ADT数据

    Figure 4.  ADT data of performance parameter power

    图 5  性能参数噪声的ADT数据

    Figure 5.  ADT data of performance parameter noise

    图 6  两参数退化型产品失效概率密度函数

    Figure 6.  Failure probability density function of products with two-parameter degradation

    图 7  第1次维修前两参数退化型产品可靠度函数

    Figure 7.  Reliability function of products with two-parameter degradation before first maintenance

    图 8  不同情况下的质保期优化

    Figure 8.  Warranty period optimization under different conditions

    图 9  参数H1的敏感性分析

    Figure 9.  Sensitivity analysis of parameter H1

    图 10  参数H2的敏感性分析

    Figure 10.  Sensitivity analysis of parameter H2

    图 11  参数H1H2的敏感性分析

    Figure 11.  Sensitivity analysis of parameters H1 and H2

    图 12  参数u的敏感性分析

    Figure 12.  Sensitivity analysis of parameter u

    表  1  常见的二元Copula函数

    Table  1.   Common binary Copula functions

    Copula函数 分布函数$ C({u_1},{u_2},\theta ) $
    Clayton $ {({u_1}^{ - \theta } + {u_2}^{ - \theta } - 1)^{ - \frac{1}{\theta }}} $
    Frank $ - \dfrac{1}{\theta }\ln \left( {1 - \dfrac{{\left( {1 - {{\text{e}}^{ - \theta {u_1}}}} \right)\left( {1 - {{\text{e}}^{ - \theta {u_2}}}} \right)}}{{1 - {{\text{e}}^{ - \theta }}}}} \right) $
    Gumbel $\exp \left\{ { - {{\left[ {{{\left( { - \ln {u_1}} \right)}^\theta } + {{\left( { - \ln {u_2}} \right)}^\theta }} \right]}^{{1 \mathord{\left/ {\vphantom {1 \theta }} \right. } \theta }}}} \right\}$
    下载: 导出CSV

    表  2  退化模型参数表

    Table  2.   Parameters of degradation model

    退化参数 ak bk σk
    功率 6.873 9 −4 639.611 9 0.087 6
    噪声 18.229 8 −9 230.483 6 0.082 4
    下载: 导出CSV

    表  3  Copula函数选取

    Table  3.   Copula function selection

    Copula参数 θ AIC 排序
    Gumbel Copula 8.370 1 −36 317 2
    Clayton Copula 10.721 2 −23 038 3
    Frank Copula 35.701 4 −39 081 1
    下载: 导出CSV

    表  4  制造商利润模型相关参数表

    Table  4.   Parameters of manufacturer’s profit model

    参数 数值 来源 参数 来源
    p 6 假设 k1 1.2 假设
    CM 2 假设 k2 2 假设
    CF 0.28 假设 $ \gamma $ 1.2 假设
    CA 0.35 假设 $ \eta $ 0.8 假设
    下载: 导出CSV
  • [1] SHANG L J, LIU B L, QIU Q G, et al. Three-dimensional warranty and post-warranty maintenance of products with monitored mission cycles[J]. Reliability Engineering & System Safety, 2023, 239: 109506.
    [2] ZHAO X J, GAUDOIN O, DOYEN L, et al. Optimal inspection and replacement policy based on experimental degradation data with covariates[J]. IISE Transactions, 2019, 51(3): 322-336.
    [3] KLEYNER A, ELMORE D. Warranty data maturity: effect of observation time on reliability prediction and the warranty management process[J]. Quality and Reliability Engineering International, 2022, 38(5): 2388-2404.
    [4] TSENG S T, HSU N J, LIN Y C. Joint modeling of laboratory and field data with application to warranty prediction for highly reliable products[J]. IIE Transactions, 2016, 48(8): 710-719.
    [5] YANG D, HE Z, HE S G. Warranty claims forecasting based on a general imperfect repair model considering usage rate[J]. Reliability Engineering & System Safety, 2016, 145: 147-154.
    [6] SHANG L J, SI S B, SUN S D, et al. Optimal warranty design and post-warranty maintenance for products subject to stochastic degradation[J]. IISE Transactions, 2018, 50(10): 913-927.
    [7] ZHAO X J, XIE M. Using accelerated life tests data to predict warranty cost under imperfect repair[J]. Computers & Industrial Engineering, 2017, 107: 223-234.
    [8] LI T, HE S G, ZHAO X J. Optimal warranty policy design for deteriorating products with random failure threshold[J]. Reliability Engineering & System Safety, 2022, 218: 108142.
    [9] SUN F Q, FU F Y, LIAO H T, et al. Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula[J]. Reliability Engineering & System Safety, 2020, 204: 107168.
    [10] SHI Y, XIANG Y S, LIAO Y, et al. Optimal burn-in policies for multiple dependent degradation processes[J]. IISE Transactions, 2021, 53(11): 1281-1293.
    [11] WANG F, LI H. On the use of the maximum entropy method for reliability evaluation involving stochastic process modeling[J]. Structural Safety, 2021, 88: 102028.
    [12] CHEN R T, ZHANG C, WANG S P, et al. Bivariate-dependent reliability estimation model based on inverse Gaussian processes and copulas fusing multisource information[J]. Aerospace, 2022, 9(7): 392.
    [13] FANG G Q, PAN R, HONG Y L. Copula-based reliability analysis of degrading systems with dependent failures[J]. Reliability Engineering & System Safety, 2020, 193: 106618.
    [14] CHI B J, WANG Y S, HU J W, et al. Reliability assessment for micro inertial measurement unit based on accelerated degradation data and copula theory[J]. Eksploatacja i Niezawodność – Maintenance and Reliability, 2022, 24(3): 554-563.
    [15] JIANG D Y, CHEN T Y, XIE J Z, et al. A mechanical system reliability degradation analysis and remaining life estimation method: with the example of an aircraft hatch lock mechanism[J]. Reliability Engineering & System Safety, 2023, 230: 108922.
    [16] FAN P P, YUAN Y P, GAO J X, et al. Reliability modelling and evaluating of wind turbine considering imperfect repair[J]. Scientific Reports, 2023, 13(1): 5323.
    [17] ZHAO X J, LIU B, XU J Y, et al. Imperfect maintenance policies for warranted products under stochastic performance degradation[J]. European Journal of Operational Research, 2023, 308(1): 150-165. doi: 10.1016/j.ejor.2022.11.001
    [18] CHEN Y X, GONG W J, XU D, et al. Imperfect maintenance policy considering positive and negative effects for deteriorating systems with variation of operating conditions[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(2): 872-878.
    [19] ZHAO X J, HE S G, XIE M. Utilizing experimental degradation data for warranty cost optimization under imperfect repair[J]. Reliability Engineering & System Safety, 2018, 177: 108-119.
    [20] WANG R C, CHENG Z H, RONG L Q, et al. Availability optimization of two-dimensional warranty products under imperfect preventive maintenance[J]. IEEE Access, 2021, 9: 8099-8109. doi: 10.1109/ACCESS.2021.3049441
    [21] ARORA R, TANDON A, AGGARWAL A G, et al. Genetic algorithm-based price and warranty optimization in software systems[J]. Expert Systems, 2024, 41(7): e13334. doi: 10.1111/exsy.13334
    [22] LIU K, ZOU T J, XIN M C, et al. RUL prediction based on two-phase Wiener process[J]. Quality and Reliability Engineering International, 2022, 38(7): 3829-3843. doi: 10.1002/qre.3177
    [23] KUCINSKIS G, BOZORGCHENANI M, FEINAUER M, et al. Arrhenius plots for Li-ion battery ageing as a function of temperature, C-rate, and ageing state–an experimental study[J]. Journal of Power Sources, 2022, 549: 232129. doi: 10.1016/j.jpowsour.2022.232129
    [24] YI X J, WANG Z Z, LIU S L, et al. An accelerated degradation durability evaluation model for the turbine impeller of a turbine based on a genetic algorithms back-propagation neural network[J]. Applied Sciences, 2022, 12(18): 9302. doi: 10.3390/app12189302
    [25] ZHENG Y D, ZHANG Y. Reliability analysis for system with dependent components based on survival signature and copula theory[J]. Reliability Engineering & System Safety, 2023, 238: 109402.
    [26] KUIPER R M. How to evaluate theory-based hypotheses in meta-analysis using an AIC-type criterion[J]. Entropy, 2022, 24(11): 1525. doi: 10.3390/e24111525
    [27] 王丙参, 魏艳华, 孙永辉. 利用舍选抽样法生成随机数[J]. 重庆师范大学学报(自然科学版), 2013, 30(6): 86-91.

    WANG B C, WEI Y H, SUN Y H. Generate random number by using acceptance rejection method[J]. Journal of Chongqing Normal University (Natural Science), 2013, 30(6): 86-91 (in Chinese).
    [28] ZHANG Z C, XU H Y, ZHAO Y X, et al. Extended warranty service provision: a strategic analysis for the E-commerce platform supply chain[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 177: 103250. doi: 10.1016/j.tre.2023.103250
    [29] SUN F Q, WANG N, LI X Y, et al. A time-varying copula-based prognostics method for bivariate accelerated degradation testing[J]. Journal of Intelligent & Fuzzy Systems, 2018, 34(6): 3707-3718.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  47
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 录用日期:  2023-10-18
  • 网络出版日期:  2023-11-01
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答