留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边缘引导的双分支网络SAR图像相干斑抑制方法

朱磊 姚同钰 车晨洁 姚丽娜 张博 潘杨

朱磊,姚同钰,车晨洁,等. 边缘引导的双分支网络SAR图像相干斑抑制方法[J]. 北京航空航天大学学报,2025,51(6):1852-1862 doi: 10.13700/j.bh.1001-5965.2023.0322
引用本文: 朱磊,姚同钰,车晨洁,等. 边缘引导的双分支网络SAR图像相干斑抑制方法[J]. 北京航空航天大学学报,2025,51(6):1852-1862 doi: 10.13700/j.bh.1001-5965.2023.0322
ZHU L,YAO T Y,CHE C J,et al. SAR image coherence speckle suppression method based on edge-guided dual-branch network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1852-1862 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0322
Citation: ZHU L,YAO T Y,CHE C J,et al. SAR image coherence speckle suppression method based on edge-guided dual-branch network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1852-1862 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0322

边缘引导的双分支网络SAR图像相干斑抑制方法

doi: 10.13700/j.bh.1001-5965.2023.0322
基金项目: 

国家自然科学基金(61971339);陕西省重点研发计划(2019GY-113);陕西省自然科学基础研究计划(2019JQ-361)

详细信息
    通讯作者:

    E-mail:zhulei791014@163.com

  • 中图分类号: TN911.73;TP751

SAR image coherence speckle suppression method based on edge-guided dual-branch network

Funds: 

National Natural Science Foundation of China (61971339); Key Research and Development Program of Shaanxi (2019GY-113); Natural Science Basic Research Program of Shaanxi (2019JQ-361)

More Information
  • 摘要:

    为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边缘信息提取模块,增强模型的边缘感知能力;利用基于通道注意力的残差抑斑子网络(CARNet)、基于混合注意力的增强抑斑子网络(MAENet)及基于多分支并行的多尺度特征融合模块(MPMFFB)共同形成双分支抑斑网络,实现在相干斑抑制的同时更好地保护边缘细节。实验结果表明:与SAR-Transformer、HTNet等先进方法相比,所提方法具有更好的相干斑抑制与边缘保持性能;对仿真SAR图像,峰值信噪比、结构相似性、边缘保持指数分别平均提升0.96 dB、2.60%、0.60%;对真实SAR图像,等效视数提升14.12%以上,边缘保持指数平均提升4.52%。

     

  • 图 1  边缘引导的双分支抑斑网络总体结构

    Figure 1.  Overall structure of edge-guided dual-branch speckle suppression network

    图 2  DCEEB模块网络结构

    Figure 2.  Network structure of DCEEB

    图 3  MPMFFB模块网络结构

    Figure 3.  Network structure of MPMFFB

    图 4  数据集样本示例

    Figure 4.  Dataset samples

    图 5  对Kodak24数据集kodim11仿真SAR图像抑斑的视觉效果对比(L=4)

    Figure 5.  Visual effect comparison of speckle suppression for kodim11 simulated SAR images in Kodak24 dataset (L = 4)

    图 6  对Classic5数据集baboon仿真SAR图像抑斑的视觉效果对比(L=4)

    Figure 6.  Visual effect comparison of speckle suppression for baboon simulated SAR images in Classic5 dataset (L = 4)

    图 7  对Set12数据集04仿真SAR图像抑斑的视觉效果对比(L=4)

    Figure 7.  Visual effect comparison of speckle suppression for 04 simulated SAR images in Set12 dataset (L = 4)

    图 8  对Amsterdam地区真实SAR图像3个区域抑斑的视觉效果对比

    Figure 8.  Visual effect comparison of speckle suppression in three regions for real SAR images in Amsterdam area

    图 9  对Amsterdam地区真实SAR图像区域1抑斑的局部细节对比

    Figure 9.  Local detail comparison of speckle suppression in region 1 for real SAR images in Amsterdam area

    图 10  对Amsterdam地区真实SAR图像区域2抑斑的局部细节对比

    Figure 10.  Local detail comparison of speckle suppression in region 2 for real SAR images in Amsterdam area

    图 11  对Amsterdam地区真实SAR图像区域3抑斑的局部细节对比

    Figure 11.  Local detail comparison of speckle suppression in region 3 for real SAR images in Amsterdam area

    图 12  不同注意力机制设置的抑斑视觉结果

    Figure 12.  Visual results of speckle suppression with different attention mechanism settings

    表  1  CARNet参数

    Table  1.   CARNet parameters

    编码器/解码器 层级 网络层结构
    编码器 L1 {conv3×3,64}×1
    L2 {resblock,64}×4,
    {strideconv2×2,128}×1
    L3 {resblock,128}×4,
    {strideconv2×2,256}×1
    L4 {resblock,256}×4,
    {strideconv2×2,512}×1
    L5 {resblock,512}×4,
    {RCABlock,512}×4
    解码器 L6 {convtranspose2×2,256}×1,
    {resblock,256}×4
    L7 {convtranspose2×2,128}×1,
    {resblock,128}×4
    L8 {convtranspose2×2,64}×1,
    {resblock,64}×4
    下载: 导出CSV

    表  2  MAENet参数

    Table  2.   MAENet parameters

    编码器/解码器 层级 网络层结构
    编码器 L1 {conv3×3,64}×1
    L2 {swin-conv block,64}×2,
    {strideconv2×2,128}×1
    L3 {swin-conv block,128}×2,
    {strideconv2×2,256}×1
    L4 {swin-conv block,256}×2,
    {strideconv2×2,512}×1
    L5 {swin-conv block,512}×2,
    {CBAM,512}×1
    解码器 L6 {convtranspose2×2,256}×1,
    {swin-conv block,256}×2
    L7 {convtranspose2×2,128}×1,
    {swin-conv block,128}×2
    L8 {convtranspose2×2,64}×1,
    {swin-conv block,64}×2
    下载: 导出CSV

    表  3  对仿真SAR图像抑斑的参数指标对比

    Table  3.   Parameter index comparison for speckle suppression of simulated SAR images

    L 方法 PSNR/dB SSIM EPI
    Set12 Classic5 Kodak24 Set12 Classic5 Kodak24 Set12 Classic5 Kodak24
    1 SAR-BM3D[21] 24.01 24.57 23.90 0.7670 0.7767 0.7914 0.9579 0.9426 0.9485
    ID-CNN[9] 25.72 20.18 20.66 0.7671 0.6421 0.6422 0.9651 0.8696 0.8796
    SAR-CNN[8] 26.10 26.04 26.64 0.7912 0.7876 0.8055 0.9682 0.9467 0.9594
    MONet[10] 26.14 26.34 26.93 0.7937 0.7994 0.8168 0.9684 0.9491 0.9617
    SAR-DCNN[11] 26.25 26.45 27.03 0.7966 0.8052 0.8220 0.9692 0.9501 0.9625
    SAR-Transformer[12] 26.19 26.44 26.98 0.7999 0.8072 0.8234 0.9688 0.9499 0.9620
    HTNet[13] 26.22 26.53 26.91 0.8083 0.8214 0.8367 0.9691 0.9494 0.9613
    本文方法 27.17 27.57 28.00 0.8356 0.8631 0.8713 0.9753 0.9617 0.9701
    4 SAR-BM3D[21] 27.85 28.40 28.01 0.8567 0.8845 0.8889 0.9807 0.9722 0.9749
    ID-CNN[9] 28.96 28.99 29.50 0.8628 0.8831 0.8908 0.9837 0.9726 0.9790
    SAR-CNN[8] 28.83 28.84 29.36 0.8627 0.8815 0.8902 0.9834 0.9723 0.9787
    MONet[10] 29.20 29.29 29.73 0.8725 0.8918 0.8992 0.9831 0.9741 0.9799
    SAR-DCNN[11] 29.31 29.39 29.82 0.8749 0.8950 0.9022 0.9849 0.9746 0.9803
    SAR-Transformer[12] 29.10 29.20 29.61 0.8733 0.8949 0.9005 0.9842 0.9737 0.9794
    HTNet[13] 29.13 29.18 29.65 0.8707 0.8886 0.8972 0.9843 0.9734 0.9796
    本文方法 29.53 29.69 30.02 0.8839 0.9050 0.9092 0.9857 0.9761 0.9810
    8 SAR-BM3D[21] 29.52 29.98 29.82 0.8883 0.9168 0.9222 0.9864 0.9797 0.9824
    ID-CNN[9] 30.51 30.20 30.66 0.8948 0.9100 0.9159 0.9886 0.9796 0.9840
    SAR-CNN[8] 30.69 30.81 31.24 0.9013 0.9226 0.9293 0.9891 0.9820 0.9859
    MONet[10] 30.70 30.76 31.22 0.8996 0.9212 0.9281 0.9891 0.9819 0.9859
    SAR-DCNN[11] 30.83 30.88 31.32 0.9031 0.9241 0.9301 0.9894 0.9822 0.9861
    SAR-Transformer[12] 30.52 30.54 31.02 0.8999 0.9218 0.9271 0.9886 0.9811 0.9852
    HTNet[13] 30.67 30.71 31.16 0.9002 0.9206 0.9274 0.9890 0.9816 0.9857
    本文方法 31.04 31.12 31.50 0.9091 0.9304 0.9348 0.9899 0.9831 0.9866
    16 SAR-BM3D[21] 31.27 31.58 31.68 0.9173 0.9429 0.9480 0.9907 0.9858 0.9882
    ID-CNN[9] 32.21 31.38 31.89 0.9222 0.9342 0.9383 0.9923 0.9850 0.9881
    SAR-CNN[8] 32.14 32.11 32.70 0.9225 0.9431 0.9490 0.9923 0.9873 0.9901
    MONet[10] 32.32 32.30 32.91 0.9257 0.9453 0.9517 0.9926 0.9877 0.9905
    SAR-DCNN[11] 32.30 32.39 33.02 0.9269 0.9468 0.9527 0.9927 0.9879 0.9906
    SAR-Transformer[12] 32.08 31.99 32.60 0.9231 0.9443 0.9490 0.9921 0.9869 0.9898
    HTNet[13] 32.32 32.28 32.88 0.9251 0.9451 0.9511 0.9925 0.9876 0.9904
    本文方法 32.65 32.60 33.18 0.9311 0.9506 0.9558 0.9931 0.9883 0.9909
     注:加粗数值为最优值。
    下载: 导出CSV

    表  4  对真实SAR图像抑斑的参数指标对比

    Table  4.   Parameter index comparison for speckle suppression of real SAR images

    区域 方法 ENL EPI
    区域A 区域B
    1 SAR-BM3D[21] 67.10 4.73 0.8663
    ID-CNN[9] 61.91 5.58 0.8864
    SAR-CNN[8] 82.19 5.69 0.7903
    MONet[10] 88.53 5.47 0.8427
    SAR-DCNN[11] 124.49 5.65 0.8437
    SAR-Transformer[12] 110.82 5.68 0.8414
    HTNet[13] 115.75 5.72 0.8642
    本文方法 146.81 5.72 0.8959
    2 SAR-BM3D[21] 71.29 48.44 0.8610
    ID-CNN[9] 23.91 200.09 0.8127
    SAR-CNN[8] 66.73 114.66 0.8061
    MONet[10] 60.92 220.34 0.8415
    SAR-DCNN[11] 104.03 215.62 0.8364
    SAR-Transformer[12] 66.13 153.32 0.8271
    HTNet[13] 97.05 207.31 0.8630
    本文方法 127.09 224.45 0.8752
    3 SAR-BM3D[21] 115.69 76.93 0.8838
    ID-CNN[9] 75.60 146.93 0.8605
    SAR-CNN[8] 191.25 104.97 0.8391
    MONet[10] 470.98 147.98 0.8560
    SAR-DCNN[11] 484.92 162.35 0.8689
    SAR-Transformer[12] 411.91 119.64 0.8404
    HTNet[13] 581.17 150.81 0.8802
    本文方法 822.13 164.44 0.9089
     注:加粗数值为最优值。
    下载: 导出CSV

    表  5  不同模块设置实验结果

    Table  5.   Experimental results for different block settings

    基准网络 DCEEB Attention MPMFFB PSNR/dB SSIM EPI
    26.38 0.8126 0.9703
    26.88 0.8390 0.9736
    27.07 0.8339 0.9749
    26.39 0.8119 0.9703
    26.50 0.8152 0.9711
    26.40 0.8111 0.9703
    27.00 0.8334 0.9744
    27.17 0.8356 0.9753
    下载: 导出CSV

    表  6  单/双分支网络模型实验结果

    Table  6.   Experimental results of single/dual-branch network model

    MAENet CARNet PSNR/dB SSIM EPI
    29.37 0.8820 0.9852
    29.45 0.8823 0.9854
    29.53 0.8839 0.9857
    下载: 导出CSV

    表  7  不同双分支网络结构设置实验结果

    Table  7.   Experimental results of different dual-branch network structure settings

    分支1分支2PSNR/dBSSIMEPI
    MAENetMAENet26.790.82640.9727
    CARNetCARNet26.980.83360.9740
    MAENetCARNet27.100.83560.9747
    CARNetMAENet27.170.83610.9753
    下载: 导出CSV

    表  8  不同注意力机制设置数据指标结果

    Table  8.   Data index results of different attention mechanism settings

    模型PSNR/dBSSIMEPI
    Model 127.070.83380.9745
    Model 227.050.83460.9747
    Model 327.130.83520.9751
    Model 427.170.83560.9753
    下载: 导出CSV
  • [1] SINGH P, DIWAKAR M, SHANKAR A, et al. A review on SAR image and its despeckling[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4633-4653. doi: 10.1007/s11831-021-09548-z
    [2] 李敬曼, 朱磊, 张博, 等. 一种带约束搜索窗的非局部平均相干斑抑制算法[J]. 西安交通大学学报, 2020, 54(10): 54-62. doi: 10.7652/xjtuxb202010007

    LI J M, ZHU L, ZHANG B, et al. Non-local means suppression algorithm of speckle with restrained search window[J]. Journal of Xi’an Jiaotong University, 2020, 54(10): 54-62(in Chinese). doi: 10.7652/xjtuxb202010007
    [3] PAN Y, MENG Y H, ZHU L. SAR image despeckling method based on improved Frost filtering[J]. Signal, Image and Video Processing, 2021, 15(4): 843-850.
    [4] 吴天琦, 肖文, 李仁剑, 等. 基于时域迭代小波变换的单分子定位图像背景去噪[J]. 中国激光, 2021, 48(13): 1307001. doi: 10.3788/CJL202148.1307001

    WU T Q, XIAO W, LI R J, et al. Single-molecule localization image background denoising based on time-domain iterative wavelet transform[J]. Chinese Journal of Lasers, 2021, 48(13): 1307001(in Chinese). doi: 10.3788/CJL202148.1307001
    [5] CHU T Y, TAN Y M, LIU Q, et al. Novel fusion method for SAR and optical images based on non-subsampled shearlet transform[J]. International Journal of Remote Sensing, 2020, 41(12): 4590-4604. doi: 10.1080/01431161.2020.1723175
    [6] YU Y J, ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260-1270. doi: 10.1109/TIP.2002.804276
    [7] AJA-FERNÁNDEZ S, ALBEROLA-LÓPEZ C. On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering[J]. IEEE Transactions on Image Processing, 2006, 15(9): 2694-2701. doi: 10.1109/TIP.2006.877360
    [8] CHIERCHIA G, COZZOLINO D, POGGI G, et al. SAR image despeckling through convolutional neural networks[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2017: 5438-5441.
    [9] WANG P Y, ZHANG H, PATEL V M. SAR image despeckling using a convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(12): 1763-1767. doi: 10.1109/LSP.2017.2758203
    [10] VITALE S, FERRAIOLI G, PASCAZIO V. Multi-objective CNN-based algorithm for SAR despeckling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9336-9349. doi: 10.1109/TGRS.2020.3034852
    [11] PASSAH A, AMITAB K, KANDAR D. SAR image despeckling using deep CNN[J]. IET Image Processing, 2021, 15(6): 1285-1297. doi: 10.1049/ipr2.12104
    [12] PERERA M V, BANDARA W G C, VALANARASU J M J, et al. Transformer-based SAR image despeckling[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 751-754.
    [13] CHENG L, GUO Z C, LI Y, et al. Two-stream multiplicative heavy-tail noise despeckling network with truncation loss[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5213817.
    [14] LIN H X, ZHUANG Y H, HUANG Y, et al. Self-supervised SAR despeckling powered by implicit deep denoiser prior[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4514705.
    [15] 朱磊, 李敬曼, 潘杨, 等. 自适应调节滤波强度的 SAR 图像非局部平均抑斑算法[J]. 电子与信息学报, 2021, 43(5): 1258-1266. doi: 10.11999/JEIT200099

    ZHU L, LI J M, PAN Y, et al. SAR image despeckling algorithm using non-local means with adaptive filtering strength[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1258-1266(in Chinese). doi: 10.11999/JEIT200099
    [16] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 294-310.
    [17] ZHANG K, LI Y W, LIANG J Y, et al. Practical blind image denoising via Swin-Conv-UNet and data synthesis[EB/OL]. (2022-03-24) [2023-05-31]. https://arxiv.org/abs/2203.13278v4.
    [18] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 3-19.
    [19] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1-9.
    [20] LEE J S, HOPPEL K. Noise modeling and estimation of remotely-sensed images[C]//Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 1989: 1005-1008.
    [21] PARRILLI S, PODERICO M, ANGELINO C V, et al. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606-616. doi: 10.1109/TGRS.2011.2161586
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  52
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-06
  • 录用日期:  2023-09-14
  • 网络出版日期:  2023-09-28
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答