留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于几何蒸馏和特征自适应的磁共振成像重建

朵琳 任勇 许渤雨 杨新

朵琳,任勇,许渤雨,等. 基于几何蒸馏和特征自适应的磁共振成像重建[J]. 北京航空航天大学学报,2025,51(6):1946-1954 doi: 10.13700/j.bh.1001-5965.2023.0323
引用本文: 朵琳,任勇,许渤雨,等. 基于几何蒸馏和特征自适应的磁共振成像重建[J]. 北京航空航天大学学报,2025,51(6):1946-1954 doi: 10.13700/j.bh.1001-5965.2023.0323
DUO L,REN Y,XU B Y,et al. MRI reconstruction based on geometry distillation and feature adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1946-1954 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0323
Citation: DUO L,REN Y,XU B Y,et al. MRI reconstruction based on geometry distillation and feature adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1946-1954 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0323

基于几何蒸馏和特征自适应的磁共振成像重建

doi: 10.13700/j.bh.1001-5965.2023.0323
基金项目: 

国家自然科学基金(61962032)

详细信息
    通讯作者:

    E-mail:duolin2003@126.com

  • 中图分类号: TP391;R319

MRI reconstruction based on geometry distillation and feature adaptation

Funds: 

National Natural Science Foundation of China (61962032)

More Information
  • 摘要:

    虽然现有基于深度学习的压缩感知磁共振成像(CS-MRI)方法已经取得了较好的效果,但这些方法的可解释性仍然面临挑战,并且从理论分析到网络设计的过渡并不够自然。为解决上述问题,提出深度双域几何蒸馏特征自适应网络(DDGD-FANet)。该深度展开网络将磁共振成像重建优化问题迭代展开成3个子部分:数据一致性模块、双域几何蒸馏模块和自适应网络模块,不仅可以补偿重建图像丢失的上下文信息,恢复更多的纹理细节,还可以去除全局伪影,进一步提高重建效果。在公开数据集使用3种不同的采样模式进行实验,结果表明:DDGD-FANet在3种采样模式下均取得了更高的峰值信噪比和结构相似性指数,在笛卡儿10%压缩感知(CS)比率下,峰值信噪比较迭代收缩阈值算法(ISTA-Net+)、快速ISTA(FISTA)-Net和DGDN模型分别提高了5.01 dB、4.81 dB和3.34 dB。

     

  • 图 1  DDGD-FANet结构

    Figure 1.  Structure of DDGD-FANet

    图 2  自适应网络结构

    Figure 2.  Structure of adaptive network

    图 3  大脑数据集上使用不同采样模式的重建效果对比

    Figure 3.  Comparison of reconstruction effects using different sampling patterns in brain dataset

    图 4  FAF末尾使用激活函数对网络性能影响

    Figure 4.  Effect of activation functions at end of FAF on network performance

    表  1  不同CS比率笛卡儿采样模式下大脑数据集重建效果对比

    Table  1.   Comparison of reconstruction effects in different CS ratios of Cartesian sampling pattern in brain dataset

    掩码类型 方法 PSNR/dB SSIM
    CS比率为10% CS比率为20% CS比率为30% CS比率为10% CS比率为20% CS比率为30%
    Zero-filling[32] 23.84 26.40 31.14 0.574 3 0.661 1 0.786 5
    PBDW[10] 26.82 32.41 35.05 0.735 5 0.866 0 0.911 6
    PANO[11] 28.98 34.62 36.75 0.789 7 0.893 3 0.922 2
    DC-CNN[24] 30.04 35.75 38.48 0.823 5 0.920 5 0.949 3
    笛卡儿 ISTA-Net[22] 30.28 36.58 39.17 0.825 6 0.933 4 0.956 8
    ISTA-Net+[22] 30.86 37.03 39.63 0.845 5 0.935 5 0.959 7
    FISTA-Net[23] 31.06 37.29 39.86 0.844 4 0.939 6 0.960 7
    DGDN[25] 32.53 38.31 40.61 0.886 3 0.949 9 0.965 6
    DDGD-FANet 35.87 39.55 41.41 0.932 0 0.959 3 0.970 1
    下载: 导出CSV

    表  2  不同CS比率伪径向和二维随机采样模式下大脑数据集建效果对比

    Table  2.   Comparison of reconstruction effects in different CS ratios of pseudo-radial and 2D random sampling pattern in brain dataset


    掩码类型

    方法
    PSNR/dB
    CS比率为10% CS比率为20% CS比率为30%
    伪径向 Zero-filling[32] 26.64 30.32 32.93
    PBDW[10] 32.48 36.53 38.95
    PANO[11] 33.61 37.01 39.29
    DC-CNN[24] 34.32 38.43 40.75
    ISTA-Net[22] 34.70 38.74 41.01
    ISTA-Net+[22] 34.83 38.75 41.00
    FISTA-Net[23] 35.10 39.05 41.19
    DGDN[25] 35.91 39.33 41.34
    DDGD-FANet 37.08 39.67 41.54
    二维随机 Zero-filling[32] 27.71 29.36 31.13
    PBDW[10] 35.68 38.49 40.83
    PANO[11] 36.60 39.57 42.03
    DC-CNN[24] 37.65 40.81 43.40
    ISTA-Net[22] 38.22 41.40 43.97
    ISTA-Net+[22] 38.41 41.66 44.20
    FISTA-Net[23] 38.36 41.75 44.29
    DGDN[25] 38.85 41.91 44.38
    DDGD-FANet 39.25 42.13 44.53
    下载: 导出CSV

    表  3  本文模型消融实验结果

    Table  3.   Results of the proposed model in ablation experiment

    模型 ADN PSNR/dB SSIM
    AM FAF
    DGDN[25]32.530.8863
    33.580.9021
    DGDN[25]+DDGD34.550.9165
    34.700.9176
    35.670.9302
    35.870.9320
    下载: 导出CSV

    表  4  数据一致性层消融实验结果

    Table  4.   Ablation experiment results of data consistency layer

    模型 PSNR/dB SSIM
    DDGD-FANet_NODC 34.73 0.9215
    DDGD-FANet 35.87 0.9320
    下载: 导出CSV
  • [1] BIAN W Y. Optimization-based deep learning methods for magnetic resonance imaging reconstruction and synthesis[D]. Gainesville: University of Florida, 2022.
    [2] LUSTIG M, DONOHO D L, SANTOS J M, et al. Compressed sensing MRI[J]. IEEE Signal Processing Magazine, 2008, 25(2): 72-82. doi: 10.1109/MSP.2007.914728
    [3] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [4] QU X B, GUO D, CHEN Z, et al. Compressed sensing MRI based on nonsubsampled contourlet transform[C]//Proceedings of the IEEE International Symposium on IT in Medicine and Education. Piscataway: IEEE Press, 2008: 693-696.
    [5] STALIDIS G, MAGLAVERAS N, DIMITRIADIS A, et al. Parametric 4D modeling of myocardial surface motion applied to MRI data[C]//Proceedings of the Computers in Cardiology. Piscataway: IEEE Press, 1997: 319-322.
    [6] SONAWANE S S, AGNIHOTRI S P. Compressed MR imaging using wavelet transform[C]//Proceedings of the International Conference on Micro-Electronics and Telecommunication Engineering. Piscataway: IEEE Press, 2016: 259-264.
    [7] LINGALA S G, JACOB M. Blind compressive sensing dynamic MRI[J]. IEEE Transactions on Medical Imaging, 2013, 32(6): 1132-1145. doi: 10.1109/TMI.2013.2255133
    [8] LIANG D, WANG H F, YING L. SENSE reconstruction with nonlocal TV regularization[C]//Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE Press, 2009: 1032-1035.
    [9] OUYANG Y, CHEN Y, WU Y. A spatial regularization framework of orientation diffusion functions using total variation and wavelet[C]//Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Piscataway: IEEE Press, 2011: 272-275.
    [10] QU X B, GUO D, NING B D, et al. Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magnetic Resonance Imaging, 2012, 30(7): 964-977. doi: 10.1016/j.mri.2012.02.019
    [11] QU X B, HOU Y K, LAM F, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Medical Image Analysis, 2014, 18(6): 843-856. doi: 10.1016/j.media.2013.09.007
    [12] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. doi: 10.1137/080716542
    [13] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122.
    [14] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [15] WANG T H, LEI Y, FU Y B, et al. Medical imaging synthesis using deep learning and its clinical applications: a review[EB/OL]. (2020-04-21)[2023-02-01]. https://arxiv.org/abs/2004.10322v1.
    [16] WANG S S, SU Z H, YING L, et al. Accelerating magnetic resonance imaging via deep learning[C]//Proceedings of the IEEE 13th International Symposium on Biomedical Imaging. Piscataway: IEEE Press, 2016: 514-517.
    [17] YANG G, YU S M, DONG H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1310-1321. doi: 10.1109/TMI.2017.2785879
    [18] YANG Y, SUN J, LI H B, et al. ADMM-CSNet: a deep learning approach for image compressive sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521-538. doi: 10.1109/TPAMI.2018.2883941
    [19] WANG S S, XIAO T H, LIU Q G, et al. Deep learning for fast MR imaging: a review for learning reconstruction from incomplete k-space data[J]. Biomedical Signal Processing and Control, 2021, 68: 102579. doi: 10.1016/j.bspc.2021.102579
    [20] AGHABIGLOU A, EKSIOGLU E M. Deep unfolding architecture for MRI reconstruction enhanced by adaptive noise maps[J]. Biomedical Signal Processing and Control, 2022, 78: 104016. doi: 10.1016/j.bspc.2022.104016
    [21] YANG Y, SUN J, LI H B, et al. Deep ADMM-net for compressive sensing MRI[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 10-18.
    [22] ZHANG J, GHANEM B. ISTA-net: interpretable optimization-inspired deep network for image compressive sensing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 1828-1837.
    [23] XIANG J X, DONG Y G, YANG Y J. FISTA-net: learning a fast iterative shrinkage thresholding network for inverse problems in imaging[J]. IEEE Transactions on Medical Imaging, 2021, 40(5): 1329-1339. doi: 10.1109/TMI.2021.3054167
    [24] SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction[J]. IEEE Transactions on Medical Imaging, 2018, 37(2): 491-503. doi: 10.1109/TMI.2017.2760978
    [25] FAN X H, YANG Y, ZHANG J P. Deep geometric distillation network for compressive sensing MRI[C]//Proceedings of the IEEE EMBS International Conference on Biomedical and Health Informatics. Piscataway: IEEE Press, 2021: 1-4.
    [26] LU C, JIANG B R, MU Y D. Fast fourier convolution[C]//Proceedings of the Neural Information Processing Systems. Vancouver: Curran Associates Inc, 2020: 4479-4488.
    [27] SINGH N M, IGLESIAS J E, ADALSTEINSSON E, et al. Joint frequency and image space learning for MRI reconstruction and analysis[J]. The Journal of Machine Learning for Biomedical Imaging, 2022, 2022: 018.
    [28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the Computer Vision–ECCV 2018. Berlin: Springer, 2018: 3-19.
    [29] CHENG J, WANG H F, ZHU Y J, et al. Model-based deep MR imaging: the roadmap of generalizing compressed sensing model using deep learning[EB/OL]. (2029-09-05)[2023-02-01]. https://arxiv.org/abs/1906.08143.
    [30] CUI Z X, ZHU Q Y, CHENG J, et al. Deep unfolding as iterative regularization for imaging inverse problems[EB/OL]. (2022-11-24)[2023-02-01]. https://arxiv.org/abs/2211.13452v1.
    [31] JIANG K, WANG Z Y, YI P, et al. Deep distillation recursive network for remote sensing imagery super-resolution[J]. Remote Sensing, 2018, 10(11): 1700. doi: 10.3390/rs10111700
    [32] BERNSTEIN M A, FAIN S B, RIEDERER S J. Effect of windowing and zero-filled reconstruction of MRI data on spatial resolution and acquisition strategy[J]. Journal of Magnetic Resonance Imaging, 2001, 14(3): 270-280. doi: 10.1002/jmri.1183
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  52
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 录用日期:  2023-08-18
  • 网络出版日期:  2023-09-12
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答