留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EHL下考虑冲击力的局部缺陷角接触球轴承动力学建模

雷春丽 薛伟 樊高峰 宋瑞哲 刘凯

雷春丽,薛伟,樊高峰,等. EHL下考虑冲击力的局部缺陷角接触球轴承动力学建模[J]. 北京航空航天大学学报,2025,51(6):1965-1977 doi: 10.13700/j.bh.1001-5965.2023.0335
引用本文: 雷春丽,薛伟,樊高峰,等. EHL下考虑冲击力的局部缺陷角接触球轴承动力学建模[J]. 北京航空航天大学学报,2025,51(6):1965-1977 doi: 10.13700/j.bh.1001-5965.2023.0335
LEI C L,XUE W,FAN G F,et al. Dynamic modelling of angular contact ball bearings with local defects under EHL considering impact force[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1965-1977 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0335
Citation: LEI C L,XUE W,FAN G F,et al. Dynamic modelling of angular contact ball bearings with local defects under EHL considering impact force[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1965-1977 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0335

EHL下考虑冲击力的局部缺陷角接触球轴承动力学建模

doi: 10.13700/j.bh.1001-5965.2023.0335
基金项目: 

国家自然科学基金(51465035)

详细信息
    通讯作者:

    E-mail:2542908749@qq.com

  • 中图分类号: TH133.3

Dynamic modelling of angular contact ball bearings with local defects under EHL considering impact force

Funds: 

National Natural Science Foundation of China (51465035)

More Information
  • 摘要:

    为详细地分析具有局部缺陷的角接触球轴承(ACBBs)的运行状态,针对传统模型未考虑轴承润滑及缺陷引起的冲击力问题,建立ACBBs在弹流润滑(EHL)条件下考虑冲击力的局部缺陷ACBBs动力学模型。建立考虑自旋的缺陷轴承弹流润滑模型,计算出缺陷轴承的油膜厚度及油膜刚度,再提出ACBBs局部缺陷时变位移激励模型和时变刚度模型,在此基础上建立与缺陷尺寸及轴承转速有关的瞬时冲击力函数;基于Hertz接触理论和冲击力函数,提出外圈具有局部缺陷ACBBs动力学计算方法;研究具有故障的角接触球轴承振动特性,并通过实验验证,分析了不同参数对轴承动力学响应的影响规律。计算结果表明:轴承在润滑条件下,冲击力对轴承的振动影响明显减弱;随着缺陷尺寸和载荷的增大,轴承故障特征的频率均不变,但其幅值增大;随着轴承转速的增大,轴承故障特征频率及其幅值均增大,为滚动轴承的故障诊断和维护提供了有力依据。

     

  • 图 1  角接触球轴承中的自旋运动

    Figure 1.  Spin motion in angular contact ball bearings

    图 2  自旋运动等效模型

    Figure 2.  Equivalent model of spin motion

    图 3  轴承局部缺陷轮廓描述

    Figure 3.  Outline description of local defects in bearings

    图 4  轴承的接触变形

    Figure 4.  Contact deformation of bearings

    图 5  滚动体经过缺陷的冲击过程

    Figure 5.  Impact process of rolling element passing through defects

    图 6  滚动体与故障边缘碰撞简化图

    Figure 6.  Simplified diagram of collision between rolling element and fault edge

    图 7  角接触球轴承动力学模型

    Figure 7.  Dynamic model of angular contact ball bearing

    图 8  实验台[27]

    1. 柔性联轴器;2. 左侧轴承座;3. 转速传感器;4. 主轴;5. 质量盘;6. 加速度传感器;7. 右侧轴承座;8. 预紧力显示用液压表;9. 驱动电机;10. 传动带。

    Figure 8.  Experiment platform[27]

    图 9  本文模型得到的文献[27]缺陷轴承外圈故障振动响应

    Figure 9.  Outer ring fault vibration response of [27] defective bearing in literature obtained by the proposed model

    图 10  滚动体陷入矩形缺陷时的位移

    Figure 10.  Displacement of rolling element when trapped in a rectangular defect

    图 11  瞬时冲击力与缺陷角度和转速之间的关系

    Figure 11.  Relationship among instantaneous impact force, defect angle, and rotational speed

    图 12  φfa=0.6°时外圈的振动响应

    Figure 12.  Vibration response of outer ring when ∆φfa = 0.6°

    图 13  φfa=0.8°时外圈的振动响应

    Figure 13.  Vibration response of outer ring when ∆φfa=0.8°

    图 14  ∆φfa=1°时外圈的振动响应

    Figure 14.  Vibration response of outer ring when ∆φfa = 1°

    图 15  瞬时冲击力与缺陷跨度角之间的关系

    Figure 15.  Relationship between instantaneous impact force and defect span angle

    图 16  不同缺陷跨度角的振动幅值变化趋势

    Figure 16.  Variation trend of vibration amplitude for different defect span angles

    图 17  不同缺陷跨度角时外圈的振动响应

    Figure 17.  Vibration response of outer ring at different defect span angles

    图 18  φfa=0.6°,不同转速对轴承振动幅值的影响

    Figure 18.  Effect of different rotational speeds on bearing vibration amplitude when ∆φfa=0.6°

    图 19  φfa=0.8°,不同转速对轴承振动幅值的影响

    Figure 19.  Effect of different rotational speeds on bearing vibration amplitude when ∆φfa=0.8°

    图 20  φfa=1°,不同转速对轴承振动幅值的影响

    Figure 20.  Effect of different rotational speeds on bearing vibration amplitude when ∆φfa=1°

    图 21  载荷对轴承外圈故障振动响应的影响

    Figure 21.  Effect of load on vibration response of outer ring fault of bearing

    表  1  弹流润滑参数

    Table  1.   EHL parameter values

    动力黏度
    η/(Pa·s)
    润滑油密度
    ρ0/(kg·m−3
    黏压系数
    α/(m2·N−1
    环境温度/
    标准大气压
    p0/Pa
    0.05 0.91 1.2×10−8 25 1.01×105
    下载: 导出CSV

    表  2  各参数取值范围

    Table  2.   Range of values for each parameter

    参数 取值
    k 1~9.5
    ub/(m·s−1 1~40
    w/N 200~104
    G 25005000
    W 3.23×10−4~1.94×10−3
    U 1.68×10−11~6.74×10−10
    Ωs 0~4.41×10−11
    下载: 导出CSV

    表  3  HRB7206AC轴承基本参数[27]

    Table  3.   Basic parameters of HRB7206AC bearing[27]

    参数 数值
    内圈直径di/mm 30
    外圈直径do/mm 62
    滚动体直径db/mm 9.525
    滚动体个数Z/个 12
    轴承宽度D/mm 16
    初始接触角α0/(°) 25
    弹性模量E/Pa 2.1×1011
    泊松比 0.3
    下载: 导出CSV

    表  4  转速、缺陷角度对冲击力的影响

    Table  4.   Effect of rotational speed and defect angle on impact force

    转速n/(r·min−1 缺陷角度∆φfa/(°) 冲击力Fimp/N
    1200 0.6 3.917
    1200 0.8 6.284
    1200 1 13.44
    1500 0.6 21.56
    1500 0.8 24.25
    1500 1 38.67
    下载: 导出CSV
  • [1] 李天夫, 屈伸, 董晨, 等. 数控机床主轴轴承失效分析[J]. 金属热处理, 2022, 47(4): 258-262.

    LI T F, QU S, DONG C, et al. Failure analysis on spindle bearing of numerical control machine tool[J]. Heat Treatment of Metals, 2022, 47(4): 258-262(in Chinese).
    [2] 卓兰. 滚动轴承的失效形式与故障诊断[J]. 赤峰学院学报(自然科学版), 2012, 28(12): 115-116.

    ZHUO L. Failure forms and fault diagnosis of rolling bearings[J]. Journal of Chifeng University (Natural Science Edition), 2012, 28(12): 115-116(in Chinese).
    [3] 杨沛然. 流体润滑数值分析[M]. 北京: 国防工业出版社, 1998.

    YANG P R. Numerical analysis of fluid lubrication[M]. Beijing: National Defense Industry Press, 1998 (in Chinese).
    [4] 王鹏, 刘晓玲, 王召岩, 等. 表面缺陷对点接触等温稳态弹流润滑的影响[J]. 润滑与密封, 2014, 39(5): 28-34. doi: 10.3969/j.issn.0254-0150.2014.05.006

    WANG P, LIU X L, WANG Z Y, et al. Influence of surface defect on the steady state isothermal EHL of point contacts[J]. Lubrication Engineering, 2014, 39(5): 28-34(in Chinese). doi: 10.3969/j.issn.0254-0150.2014.05.006
    [5] 雷春丽, 巩宝儒, 贾希斌, 等. 自旋对角接触球轴承弹流润滑与油膜刚度的影响[J]. 润滑与密封, 2020, 45(12): 19-25. doi: 10.3969/j.issn.0254-0150.2020.12.004

    LEI C L, GONG B R, JIA X B, et al. Influence of spinning on elastohydrodynamic lubrication and film stiffness of angular contact ball bearings[J]. Lubrication Engineering, 2020, 45(12): 19-25(in Chinese). doi: 10.3969/j.issn.0254-0150.2020.12.004
    [6] 路遵友, 吕延军, 李莎, 等. 考虑热弹性变形和表面粗糙度的圆柱滚子轴承热弹流润滑分析[J]. 机械工程学报, 2018, 54(13): 159-169. doi: 10.3901/JME.2018.13.159

    LU Z Y, LYU Y J, LI S, et al. Thermal elastohydrodynamic lubrication analysis of cylindrical roller bearing considering thermal elastic deformation and surface roughness[J]. Journal of Mechanical Engineering, 2018, 54(13): 159-169(in Chinese). doi: 10.3901/JME.2018.13.159
    [7] WIJNANT Y H, WENSING J A, NIJEN G C. The influence of lubrication on the dynamic behaviour of ball bearings[J]. Journal of Sound and Vibration, 1999, 222(4): 579-596. doi: 10.1006/jsvi.1998.2068
    [8] YAN P F, YAN C F, WANG K, et al. 5-DOF dynamic modeling of rolling bearing with local defect considering comprehensive stiffness under isothermal elastohydrodynamic lubrication[J]. Shock and Vibration, 2020, 2020(1): 9310278.
    [9] 曹宏瑞, 李亚敏, 成玮, 等. 局部损伤滚动轴承建模与转子系统振动仿真[J]. 振动 测试与诊断, 2014, 34(3): 549-552.

    CAO H R, LI Y M, CHENG W, et al. Rolling bearing modeling with localized defects and vibration response simulati on of rotor-bearing system[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(3): 549-552(in Chinese).
    [10] 罗茂林, 郭瑜, 伍星. 基于时变接触刚度的球轴承双冲击现象动力学建模[J]. 振动工程学报, 2018, 31(5): 875-882.

    LUO M L, GUO Y, WU X. Dynamic modeling for double impulses behavior of a spalled ball bearing based on time-varying contact stiffness[J]. Journal of Vibration Engineering, 2018, 31(5): 875-882(in Chinese).
    [11] 剡昌锋, 康建雄, 苑浩, 等. 考虑弹流润滑及滑动作用下滚动轴承系统局部缺陷位移激励动力学建模[J]. 振动与冲击, 2018, 37(5): 56-64.

    YAN C F, KANG J X, YUAN H, et al. Dynamic modeling for local defect displacement excitation in rolling bearing systems under elasto-hydrodynamic lubrication and slip[J]. Journal of Vibration and Shock, 2018, 37(5): 56-64(in Chinese).
    [12] 李志农, 周泽文, 胡茑庆, 等. 考虑冲击力的球轴承复合缺陷动力学建模[J]. 沈阳工业大学学报, 2022, 44(2): 173-179. doi: 10.7688/j.issn.1000-1646.2022.02.09

    LI Z N, ZHOU Z W, HU N Q, et al. Dynamic modeling of composite defects of ball bearing with consideration of impact force[J]. Journal of Shenyang University of Technology, 2022, 44(2): 173-179 (in Chinese). doi: 10.7688/j.issn.1000-1646.2022.02.09
    [13] 黄文涛, 董振振, 孔繁朝. 引入撞击力的滚动轴承内圈故障振动模型[J]. 振动与冲击, 2016, 35(17): 121-126.

    HUANG W T, DONG Z Z, KONG F C. Vibration model of rolling element bearings with inner race faults considering impact force[J]. Journal of Vibration and Shock, 2016, 35(17): 121-126(in Chinese).
    [14] 崔玲丽, 张宇, 巩向阳, 等. 基于振动响应机理的轴承故障定量诊断及量化分析[J]. 北京工业大学学报, 2015, 41(11): 1681-1687. doi: 10.11936/bjutxb2015050093

    CUI L L, ZHANG Y, GONG X Y, et al. Vibration mechanism based quantitative diagnosis and quantization analysis of rolling bearing fault[J]. Journal of Beijing University of Technology, 2015, 41(11): 1681-1687(in Chinese). doi: 10.11936/bjutxb2015050093
    [15] 胡爱军, 吉新星, 向玲, 等. 滚动轴承非线性时变参数动力学模型与故障机理研究[J]. 机械工程学报, 2022, 58(19): 139-147. doi: 10.3901/JME.2022.19.139

    HU A J, JI X X, XIANG L, et al. Nonlinear time-varying parameter dynamic model of rolling bearing and failure mechanism research[J]. Journal of Mechanical Engineering, 2022, 58(19): 139-147 (in Chinese). doi: 10.3901/JME.2022.19.139
    [16] CUI L L, ZHANG Y, ZHANG F B, et al. Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis[J]. Journal of Sound and Vibration, 2016, 364: 67-76. doi: 10.1016/j.jsv.2015.10.015
    [17] CUI L L, HUANG J F, ZHANG F B. Quantitative and localization diagnosis of a defective ball bearing based on vertical-horizontal synchronization signal analysis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8695-8706. doi: 10.1109/TIE.2017.2698359
    [18] ZHANG F L, ZHANG Y W, GUAN J Y, et al. Fault dynamic modeling and characteristic parameter simulation of rolling bearing with inner ring local defects[J]. Shock and Vibration, 2021, 2021(1): 5077366. doi: 10.1155/2021/5077366
    [19] WEN C W, MENG X H, FANG C C, et al. Dynamic behaviors of angular contact ball bearing with a localized surface defect considering the influence of cage and oil lubrication[J]. Mechanism and Machine Theory, 2021, 162: 104352. doi: 10.1016/j.mechmachtheory.2021.104352
    [20] NIU L K, CAO H R, HE Z J, et al. Dynamic modeling and vibration response simulation for high speed rolling ball bearings with localized surface defects in raceways[J]. Journal of Manufacturing Science and Engineering, 2014, 136(4): 041015. doi: 10.1115/1.4027334
    [21] 黄平. 润滑数值计算方法[M]. 北京: 高等教育出版社, 2012.

    HUANG P. Lubrication numerical calculation methods[M]. Beijing: Higher Education Press, 2012 (in Chinese).
    [22] ROELANDS C J A, WINER W O, WRIGHT W A. Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils(dr in dissertation at technical university of delft, 1966)[J]. Journal of Lubrication Technology, 1971, 93(1): 209-210. doi: 10.1115/1.3451519
    [23] 黄平. 弹性流体动压润滑数值计算方法 [M]. 北京: 清华大学出版社, 2013.

    HUANG P. Numerical calculation method for elastohydrodynamic lubrication [M]. Beijing: Tsinghua University Press, 2013(in Chinese).
    [24] 吴明星, 吴维, 胡纪滨, 等. 考虑自旋的高速角接触球轴承油膜刚度计算[J]. 振动与冲击, 2014, 33(10): 38-42.

    WU M X, WU W, HU J B, et al. Oil film stiffness calculation of high speed angular contact ball bearings considering spinning[J]. Journal of Vibration and Shock, 2014, 33(10): 38-42(in Chinese).
    [25] HARRIS T A, KOTZALAS M N. Essential concepts of bearing technology[M]. Boca Raton: CRC Press, 2006.
    [26] 李昊泽, 贺雅, 冯坤, 等. 考虑时变激励的滚动轴承局部故障动力学建模[J]. 航空学报, 2022, 43(8): 625176. doi: 10.7527/j.issn.1000-6893.2022.8.hkxb202208007

    LI H Z, HE Y, FENG K, et al. Dynamic modeling of rolling bearing local fault considering time-varying excitation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 625176(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.8.hkxb202208007
    [27] 周智, 朱永生, 闫柯, 等. 考虑缺陷因素的角接触球轴承七自由度动力学模型[J]. 计算机集成制造系统, 2014, 20(11): 2836-2842.

    ZHOU Z, ZHU Y S, YAN K, et al. Seven degrees of freedom dynamic model of angular contact ball bearing with defects[J]. Computer Integrated Manufacturing Systems, 2014, 20(11): 2836-2842(in Chinese).
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  69
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-09
  • 录用日期:  2023-07-21
  • 网络出版日期:  2023-08-24
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答