Dynamic modelling of angular contact ball bearings with local defects under EHL considering impact force
-
摘要:
为详细地分析具有局部缺陷的角接触球轴承(ACBBs)的运行状态,针对传统模型未考虑轴承润滑及缺陷引起的冲击力问题,建立ACBBs在弹流润滑(EHL)条件下考虑冲击力的局部缺陷ACBBs动力学模型。建立考虑自旋的缺陷轴承弹流润滑模型,计算出缺陷轴承的油膜厚度及油膜刚度,再提出ACBBs局部缺陷时变位移激励模型和时变刚度模型,在此基础上建立与缺陷尺寸及轴承转速有关的瞬时冲击力函数;基于Hertz接触理论和冲击力函数,提出外圈具有局部缺陷ACBBs动力学计算方法;研究具有故障的角接触球轴承振动特性,并通过实验验证,分析了不同参数对轴承动力学响应的影响规律。计算结果表明:轴承在润滑条件下,冲击力对轴承的振动影响明显减弱;随着缺陷尺寸和载荷的增大,轴承故障特征的频率均不变,但其幅值增大;随着轴承转速的增大,轴承故障特征频率及其幅值均增大,为滚动轴承的故障诊断和维护提供了有力依据。
Abstract:In order to precisely analyze the operating status of angular contact ball bearings (ACBBs) with local defects and response to the impact force caused by bearing lubrication and defects in the traditional model, a dynamic model of ACBBs with local defects considering impact force under elastohydrodynamic lubrication (EHL) conditions was proposed. Firstly, an EHL model for defective bearings considering spin was established, and the oil film thickness and oil film stiffness of the defective bearings were calculated. Time-varying displacement excitation model and time-varying stiffness model for local defects in ACBBs were presented. On this basis, an instantaneous impact force function related to defect size and bearing speed was established. Secondly, based on Hertz contact theory and impact force function, a dynamic calculation method for ACBBs with local defects on the outer ring was proposed. Finally, the vibration characteristics of ball bearings with faults were investigated, and the influence of different parameters on the dynamic response of the bearings was analyzed through experiments. The calculation results show that under lubrication conditions, the impact force on the vibration of the bearing is significantly weakened. With the increase in defect size and load, the frequency of bearing fault characteristics remains unchanged, but its amplitude increases. As the bearing speed increases, the characteristic frequency and amplitude of bearing faults increase, providing a powerful basis for fault diagnosis and maintenance of rolling bearings.
-
表 1 弹流润滑参数
Table 1. EHL parameter values
动力黏度
η/(Pa·s)润滑油密度
ρ0/(kg·m−3)黏压系数
α/(m2·N−1)环境温度/
℃标准大气压
p0/Pa0.05 0.91 1.2×10−8 25 1.01×105 表 2 各参数取值范围
Table 2. Range of values for each parameter
参数 取值 k 1~9.5 ub/(m·s−1) 1~40 w/N 200~104 G 2500 ~5000 W 3.23×10−4~1.94×10−3 U 1.68×10−11~6.74×10−10 Ωs 0~4.41×10−11 参数 数值 内圈直径di/mm 30 外圈直径do/mm 62 滚动体直径db/mm 9.525 滚动体个数Z/个 12 轴承宽度D/mm 16 初始接触角α0/(°) 25 弹性模量E/Pa 2.1×1011 泊松比 0.3 表 4 转速、缺陷角度对冲击力的影响
Table 4. Effect of rotational speed and defect angle on impact force
转速n/(r·min−1) 缺陷角度∆φfa/(°) 冲击力Fimp/N 1200 0.6 3.917 1200 0.8 6.284 1200 1 13.44 1500 0.6 21.56 1500 0.8 24.25 1500 1 38.67 -
[1] 李天夫, 屈伸, 董晨, 等. 数控机床主轴轴承失效分析[J]. 金属热处理, 2022, 47(4): 258-262.LI T F, QU S, DONG C, et al. Failure analysis on spindle bearing of numerical control machine tool[J]. Heat Treatment of Metals, 2022, 47(4): 258-262(in Chinese). [2] 卓兰. 滚动轴承的失效形式与故障诊断[J]. 赤峰学院学报(自然科学版), 2012, 28(12): 115-116.ZHUO L. Failure forms and fault diagnosis of rolling bearings[J]. Journal of Chifeng University (Natural Science Edition), 2012, 28(12): 115-116(in Chinese). [3] 杨沛然. 流体润滑数值分析[M]. 北京: 国防工业出版社, 1998.YANG P R. Numerical analysis of fluid lubrication[M]. Beijing: National Defense Industry Press, 1998 (in Chinese). [4] 王鹏, 刘晓玲, 王召岩, 等. 表面缺陷对点接触等温稳态弹流润滑的影响[J]. 润滑与密封, 2014, 39(5): 28-34. doi: 10.3969/j.issn.0254-0150.2014.05.006WANG P, LIU X L, WANG Z Y, et al. Influence of surface defect on the steady state isothermal EHL of point contacts[J]. Lubrication Engineering, 2014, 39(5): 28-34(in Chinese). doi: 10.3969/j.issn.0254-0150.2014.05.006 [5] 雷春丽, 巩宝儒, 贾希斌, 等. 自旋对角接触球轴承弹流润滑与油膜刚度的影响[J]. 润滑与密封, 2020, 45(12): 19-25. doi: 10.3969/j.issn.0254-0150.2020.12.004LEI C L, GONG B R, JIA X B, et al. Influence of spinning on elastohydrodynamic lubrication and film stiffness of angular contact ball bearings[J]. Lubrication Engineering, 2020, 45(12): 19-25(in Chinese). doi: 10.3969/j.issn.0254-0150.2020.12.004 [6] 路遵友, 吕延军, 李莎, 等. 考虑热弹性变形和表面粗糙度的圆柱滚子轴承热弹流润滑分析[J]. 机械工程学报, 2018, 54(13): 159-169. doi: 10.3901/JME.2018.13.159LU Z Y, LYU Y J, LI S, et al. Thermal elastohydrodynamic lubrication analysis of cylindrical roller bearing considering thermal elastic deformation and surface roughness[J]. Journal of Mechanical Engineering, 2018, 54(13): 159-169(in Chinese). doi: 10.3901/JME.2018.13.159 [7] WIJNANT Y H, WENSING J A, NIJEN G C. The influence of lubrication on the dynamic behaviour of ball bearings[J]. Journal of Sound and Vibration, 1999, 222(4): 579-596. doi: 10.1006/jsvi.1998.2068 [8] YAN P F, YAN C F, WANG K, et al. 5-DOF dynamic modeling of rolling bearing with local defect considering comprehensive stiffness under isothermal elastohydrodynamic lubrication[J]. Shock and Vibration, 2020, 2020(1): 9310278. [9] 曹宏瑞, 李亚敏, 成玮, 等. 局部损伤滚动轴承建模与转子系统振动仿真[J]. 振动 测试与诊断, 2014, 34(3): 549-552.CAO H R, LI Y M, CHENG W, et al. Rolling bearing modeling with localized defects and vibration response simulati on of rotor-bearing system[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(3): 549-552(in Chinese). [10] 罗茂林, 郭瑜, 伍星. 基于时变接触刚度的球轴承双冲击现象动力学建模[J]. 振动工程学报, 2018, 31(5): 875-882.LUO M L, GUO Y, WU X. Dynamic modeling for double impulses behavior of a spalled ball bearing based on time-varying contact stiffness[J]. Journal of Vibration Engineering, 2018, 31(5): 875-882(in Chinese). [11] 剡昌锋, 康建雄, 苑浩, 等. 考虑弹流润滑及滑动作用下滚动轴承系统局部缺陷位移激励动力学建模[J]. 振动与冲击, 2018, 37(5): 56-64.YAN C F, KANG J X, YUAN H, et al. Dynamic modeling for local defect displacement excitation in rolling bearing systems under elasto-hydrodynamic lubrication and slip[J]. Journal of Vibration and Shock, 2018, 37(5): 56-64(in Chinese). [12] 李志农, 周泽文, 胡茑庆, 等. 考虑冲击力的球轴承复合缺陷动力学建模[J]. 沈阳工业大学学报, 2022, 44(2): 173-179. doi: 10.7688/j.issn.1000-1646.2022.02.09LI Z N, ZHOU Z W, HU N Q, et al. Dynamic modeling of composite defects of ball bearing with consideration of impact force[J]. Journal of Shenyang University of Technology, 2022, 44(2): 173-179 (in Chinese). doi: 10.7688/j.issn.1000-1646.2022.02.09 [13] 黄文涛, 董振振, 孔繁朝. 引入撞击力的滚动轴承内圈故障振动模型[J]. 振动与冲击, 2016, 35(17): 121-126.HUANG W T, DONG Z Z, KONG F C. Vibration model of rolling element bearings with inner race faults considering impact force[J]. Journal of Vibration and Shock, 2016, 35(17): 121-126(in Chinese). [14] 崔玲丽, 张宇, 巩向阳, 等. 基于振动响应机理的轴承故障定量诊断及量化分析[J]. 北京工业大学学报, 2015, 41(11): 1681-1687. doi: 10.11936/bjutxb2015050093CUI L L, ZHANG Y, GONG X Y, et al. Vibration mechanism based quantitative diagnosis and quantization analysis of rolling bearing fault[J]. Journal of Beijing University of Technology, 2015, 41(11): 1681-1687(in Chinese). doi: 10.11936/bjutxb2015050093 [15] 胡爱军, 吉新星, 向玲, 等. 滚动轴承非线性时变参数动力学模型与故障机理研究[J]. 机械工程学报, 2022, 58(19): 139-147. doi: 10.3901/JME.2022.19.139HU A J, JI X X, XIANG L, et al. Nonlinear time-varying parameter dynamic model of rolling bearing and failure mechanism research[J]. Journal of Mechanical Engineering, 2022, 58(19): 139-147 (in Chinese). doi: 10.3901/JME.2022.19.139 [16] CUI L L, ZHANG Y, ZHANG F B, et al. Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis[J]. Journal of Sound and Vibration, 2016, 364: 67-76. doi: 10.1016/j.jsv.2015.10.015 [17] CUI L L, HUANG J F, ZHANG F B. Quantitative and localization diagnosis of a defective ball bearing based on vertical-horizontal synchronization signal analysis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8695-8706. doi: 10.1109/TIE.2017.2698359 [18] ZHANG F L, ZHANG Y W, GUAN J Y, et al. Fault dynamic modeling and characteristic parameter simulation of rolling bearing with inner ring local defects[J]. Shock and Vibration, 2021, 2021(1): 5077366. doi: 10.1155/2021/5077366 [19] WEN C W, MENG X H, FANG C C, et al. Dynamic behaviors of angular contact ball bearing with a localized surface defect considering the influence of cage and oil lubrication[J]. Mechanism and Machine Theory, 2021, 162: 104352. doi: 10.1016/j.mechmachtheory.2021.104352 [20] NIU L K, CAO H R, HE Z J, et al. Dynamic modeling and vibration response simulation for high speed rolling ball bearings with localized surface defects in raceways[J]. Journal of Manufacturing Science and Engineering, 2014, 136(4): 041015. doi: 10.1115/1.4027334 [21] 黄平. 润滑数值计算方法[M]. 北京: 高等教育出版社, 2012.HUANG P. Lubrication numerical calculation methods[M]. Beijing: Higher Education Press, 2012 (in Chinese). [22] ROELANDS C J A, WINER W O, WRIGHT W A. Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils(dr in dissertation at technical university of delft, 1966)[J]. Journal of Lubrication Technology, 1971, 93(1): 209-210. doi: 10.1115/1.3451519 [23] 黄平. 弹性流体动压润滑数值计算方法 [M]. 北京: 清华大学出版社, 2013.HUANG P. Numerical calculation method for elastohydrodynamic lubrication [M]. Beijing: Tsinghua University Press, 2013(in Chinese). [24] 吴明星, 吴维, 胡纪滨, 等. 考虑自旋的高速角接触球轴承油膜刚度计算[J]. 振动与冲击, 2014, 33(10): 38-42.WU M X, WU W, HU J B, et al. Oil film stiffness calculation of high speed angular contact ball bearings considering spinning[J]. Journal of Vibration and Shock, 2014, 33(10): 38-42(in Chinese). [25] HARRIS T A, KOTZALAS M N. Essential concepts of bearing technology[M]. Boca Raton: CRC Press, 2006. [26] 李昊泽, 贺雅, 冯坤, 等. 考虑时变激励的滚动轴承局部故障动力学建模[J]. 航空学报, 2022, 43(8): 625176. doi: 10.7527/j.issn.1000-6893.2022.8.hkxb202208007LI H Z, HE Y, FENG K, et al. Dynamic modeling of rolling bearing local fault considering time-varying excitation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 625176(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.8.hkxb202208007 [27] 周智, 朱永生, 闫柯, 等. 考虑缺陷因素的角接触球轴承七自由度动力学模型[J]. 计算机集成制造系统, 2014, 20(11): 2836-2842.ZHOU Z, ZHU Y S, YAN K, et al. Seven degrees of freedom dynamic model of angular contact ball bearing with defects[J]. Computer Integrated Manufacturing Systems, 2014, 20(11): 2836-2842(in Chinese). -