-
摘要:
大气数据传感系统为飞行器飞行控制及投放初始状态给定与轨迹控制提供必要的静压、总压、迎角、侧滑角等参量,飞行器跨代发展诱发了大气数据传感系统参数解算基本要素获取方式由直接型演变为解耦提取。对大气数据传感系统构型形态和发展历程进行总结、提炼,系统分析了大气数据传感系统构型演变原因及过程、大气参数解算模型原理、故障大气参数诊断与检测流程、系统重构模型,总结了未来飞行器大气数据传感系统构型与参数解算设计重点研究方向。
Abstract:The air data sensing system provides the necessary parameters for aircraft flight control, delivery and trajectory control, such as static pressure, total pressure, angle of attack, and sideslip angle. The inter-generation development of aircraft has induced the evolution of the basic element acquisition method for parameter calculation of air data sensing systems from direct type to decoupled extraction. This paper summarized and refined the configuration and development history of the air data sensing system and systematically analyzed the causes and processes of configuration evolution for the air data sensing system, the principle of air parameter calculation model, the diagnosis and detection process of fault air parameters, and system reconstruction model. It also summarized the key research directions for configuration and parameter solution design of air data sensing systems for aircraft in the future.
-
-
[1] HAERING JR E A. Airdata measurement and calibration[EB/OL]. (1995-12-01)[2023-06-04]. https://ntrs.nasa.gor/api/citations/19990065780/downloads/19990063780.pdf. [2] UTC Aerospace Systems. Air data probes[EB/OL]. (2017-01-01)[2023-10-01]. https://prd-sc102-cdn.rtx.com/-/media/ca/product-assets/files/commercial/flight-deck/surveillance/air-data-systems/air-data-probes.pdf. [3] 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377.YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377(in Chinese). [4] 史彦斌, 高宪军, 王远达. 航空电子系统导论[M]. 北京: 国防工业出版社, 2019: 254-258.SHI Y B, GAO X J, WANG Y D. Introduction to avionics systems[M]. Beijing: National Defense Industry Press, 2019: 254-258(in Chinese). [5] 岳亚洲, 李彬, 雷宏杰. 激光大气运动参数测量技术研究进展及展望(特邀)[J]. 光子学报, 2022, 51(4): 0428001. doi: 10.3788/gzxb20225104.0428001YUE Y Z, LI B, LEI H J. Advances and prospects of laser measurement technology for air motion parameters(invited)[J]. Acta Photonica Sinica, 2022, 51(4): 0428001(in Chinese). doi: 10.3788/gzxb20225104.0428001 [6] CALDWELL L M, TANG S Y, O’BRIEN M. Optical air data systems and methods: US7760339[P]. 2010-07-20. [7] CALDWELL L M, ACOTT P E, O’BRIEN M. Optical air data systems and methods: US11300584[P]. 2022-04-12. [8] CALDWELL L M, O’BRIEN M J, WEIMER C S, et al. Optical air data systems and methods: US6894768[P]. 2005-05-17. [9] CALDWELL L M, TANG S Y, ACOTT P E, et al. Optical air data systems and methods: US8072584[P]. 2011-12-06. [10] 孙友师. 光学大气数据测量系统的发展研究[C]//航空试验测试技术峰会论文集. 北京: 中国航空学会2010: 6-9.SUN Y S. Progress of optical air data measurement systems[C]//Proceedings of the Aviation Test Technology Summit. Beijing: Chinese Society of Aeronautics and Astronautics, 2010, 29: 6-9(in Chinese). [11] BOGUE R. Recent flight-test results of optical airdata techniques[C]//Proceedings of the 6th AIAA Biennial Flight Test Conference. Reston: AIAA, 1992. [12] MAMIDIPUDI P, DAKIN E A, DAKIN D C, et al. LandSafe precision flight instrumentation system: the DVE solution[C]//Proceedings of the Airborne Intelligence, Surveillance, Reconnaissance Systems and Applications. Bellinham: SPIE, 2012. [13] 秋路, 屈飞舟, 惠辉辉. 机载激光测速技术在大气数据校准领域的应用研究[J]. 航空科学技术, 2019, 30(2): 32-36.QIU L, QU F Z, HUI H H. Research on applications of airborne laser anemometry in air data calibration[J]. Aeronautical Science & Technology, 2019, 30(2): 32-36(in Chinese). [14] BOGUE R K, JENTINK H W. Optical air flow measurements in flight: NASA/TP-2004-210735 [R]. Washington, D. C. : NASA, 2018. [15] VERBEEK M J, JENTINK H W. Optical air data system flight testing: NLR-TP-2012-068[R]. Munich : NLR, 2012. [16] 梁应剑, 梅运桥, 程丽媛, 等. 基于米散射的光学大气数据系统研究[J]. 测控技术, 2015, 34(1): 32-34. doi: 10.3969/j.issn.1000-8829.2015.01.009LIANG Y J, MEI Y Q, CHENG L Y, et al. Research on optical air data system based on Mie scattering[J]. Measurement & Control Technology, 2015, 34(1): 32-34(in Chinese). doi: 10.3969/j.issn.1000-8829.2015.01.009 [17] 王晓维, 梁应剑, 李翔, 等. 基于光学多普勒频移的低空速测量方法研究[J]. 激光技术, 2016, 40(5): 629-632. doi: 10.7510/jgjs.issn.1001-3806.2016.05.003WANG X W, LIANG Y J, LI X, et al. Research of low-airspeed measurement based on optical Doppler frequency shift[J]. Laser Technology, 2016, 40(5): 629-632(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2016.05.003 [18] 龙彦志, 梁应剑, 黄巧平, 等. 基于多普勒频移的光学大气测速系统设计[J]. 北京航空航天大学学报, 2018, 44(12): 2521-2527.LONG Y Z, LIANG Y J, HUANG Q P, et al. Design of optical airspeed measurement system based on Doppler shift[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2521-2527(in Chinese). [19] 宋秀毅, 陆宇平. 嵌入式大气数据传感系统压力传感器设计研究[J]. 计测技术, 2007, 27(5): 8-10. doi: 10.3969/j.issn.1674-5795.2007.05.003SONG X Y, LU Y P. Research on design of pressure sensor of embedded airdata sensing system[J]. Metrology & Measurement Technology, 2007, 27(5): 8-10(in Chinese). doi: 10.3969/j.issn.1674-5795.2007.05.003 [20] 沈国清. 嵌入式大气数据传感系统误差分析及其消除方法研究[D]. 南京: 南京航空航天大学, 2012: 15-23.SHEN G Q. Research on error analysis and elimination method of embedded air data sensing system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 15-23(in Chinese). [21] WHITMORE S, MOES T. The effects of pressure sensor acoustics on airdata derived from a high-angle-of-attack flush airdata sensing system[C]//Proceedings of the 29th Aerospace Sciences Meeting. Reston: AIAA, 1991. [22] 陈怦. F-35”闪电”Ⅱ战斗机飞行试验全纪录[M]. 北京: 航空工业出版社, 2019: 59-67.CHENG P. Full flight test record of F-35 lightning fighter jet[M]. Beijing: Aviation Industry Press, 2019: 59-67(in Chinese). [23] 丁智坚, 周欢, 吴东升, 等. 嵌入式大气数据测量系统技术研究进展[J]. 宇航学报, 2019, 40(3): 247-257. doi: 10.3873/j.issn.1000-1328.2019.03.001DING Z J, ZHOU H, WU D S, et al. Review of flush air data sensing system[J]. Journal of Astronautics, 2019, 40(3): 247-257(in Chinese). doi: 10.3873/j.issn.1000-1328.2019.03.001 [24] CARY J, KEENER E R. Flight evaluation of the X-15 ball-nose flow-direction sensor as an air-data system: NASA TN D-2923 [R]. Washington, D. C. : NASA, 1965. [25] ROW P, FISCHEL J. Operational flight-test experience with the X-15 airplane[C]//Proceedings of the Space Flight Testing Conference. Reston: AIAA, 1963. [26] WOESTE T. Shuttle entry air data system - an experimental investigation of calibration for ascent flight[C]//Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. [27] SIEMERS P M, WOLF H, FLANAGAN P F, et al. Shuttle entry air data system concepts applied to space shuttle orbiter flight pressure data to determine air data-STS 1-4[C]//Proceedings of the 21st Aerospace Sciences Meeting. Reston: AIAA, 1983. [28] HENRY M, WOLF H, SIEMERS P. An evaluation of shuttle entry air data system (seads) flight pressures-comparisons with wind tunnel and theoretical predictions[C]//Proceedings of the 15th Aerodynamic Testing Conference. Reston: AIAA, 1988. [29] WHITMORE S, MOES T, LARSON T. Preliminary results from a subsonic high-angle-of-attack flush airdata sensing (HI-FADS) system-design, calibration, algorithm development, and flight test evaluation[C]//Proceedings of the 28th Aerospace Sciences Meeting. Reston: AIAA, 1990. [30] WHITMORE S A. Development of a pneumatic high-angle-of-attack flush airdata sensing (HI-FADS) system[J]. Control and Dynamic Systems, 1992, 52: 453-511. [31] WEISS S. Comparing three algorithms for modeling flush air data systems[C]//Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. [32] WHITMORE S, COBLEIGH B, HAERING E Jr. Design and calibration of the X-33 flush airdata sensing (FADS) system[C]//Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. [33] COBLEIGH B, WHITMORE S, HAERING E Jr, et al. Flush airdata sensing (FADS) system calibration procedures and results for blunt forebodies[C]//Proceedings of the 36th 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. [34] ELLSWORTH J, WHITMORE S. Reentry air data for a sub-orbital spacecraft based on X-34 design[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. [35] WHITMORE S A, ELLSWORTH J C. Simulation of a flush air-data system for transatmospheric vehicles[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 716-732. doi: 10.2514/1.33541 [36] BAUMANN E, PAHLE J W, DAVIS M C, et al. X-43A flush airdata sensing system flight-test results[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 48-61. doi: 10.2514/1.41163 [37] TAKAKI R, TAKIZAWA M, TAKAKI R, et al. ADS measurement of HYFLEX (hypersonic flight experiment) [C]//Proceedings of the 35th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1997. [38] THEIL S, SCHLOTTERER M, CONRADT M, et al. Hybrid navigation system for the SHEFEX-2 mission[C]//Proceedings of the 36th AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2008. [39] 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310.DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626310(in Chinese). [40] 蔡琰. 国外射流飞行控制技术发展及前景分析[J]. 航空科学技术, 2020, 31(1): 85-86.CAI Y. Development and prospect analysis of jet flight control technology abroad[J]. Aeronautical Science & Technology, 2020, 31(1): 85-86(in Chinese). [41] 顾诵芬, 史超礼. 世界航空发展史[M]. 郑州: 河南科学技术出版社, 1998: 138.GU S F, SHI C L. The history of the world aviation development[M]. Zhengzhou: Henan Science and Technology Press, 1998: 138(in Chinese). [42] 秦伟伟, 刘刚, 赵欣, 等. 临近空间高超声速飞行器控制系统基本原理[M]. 北京: 北京航空航天大学出版社, 2019: 24-26.QIN W W, LIU G, ZHAO X, et al. Basic principle of control system for near-space hypersonic vehicle[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2019: 24-26(in Chinese). [43] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013(in Chinese). [44] 魏小龙, 韩欣珉, 李益文, 等. 动态可调等离子体隐身技术[M]. 北京: 科学出版社, 2021.WEI X L, HAN X M, LI Y W, et al. Dynamic adjustable plasma stealth technology[M]. Beijing: Science Press, 2021(in Chinese). [45] 蒋瑾, 钟伯文, 符松. 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2016, 37(1): 278-289.JIANG J, ZHONG B W, FU S. Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 278-289(in Chinese). [46] 李晓勇, 张淼, 鲁素芬, 等. 翼身融合飞机的空气动力学研究进展[J]. 飞机设计, 2007, 27(2): 1-9. doi: 10.3969/j.issn.1673-4599.2007.02.001LI X Y, ZHANG M, LU S F, et al. Advances in aerodynamics for blended-wing-body aircraft[J]. Aircraft Design, 2007, 27(2): 1-9(in Chinese). doi: 10.3969/j.issn.1673-4599.2007.02.001 [47] 葛志闪. 飞翼布局无人机控制律设计[D]. 西安: 西北工业大学, 2007: 1-83.GE Z S. Design of control law for UAV with flying wing layout[D]. Xi’an: Northwestern Polytechnical University, 2007: 1-83(in Chinese). [48] 李永丰, 吕永玺, 史静平, 等. 深度确定性策略梯度和预测相结合的无人机空战决策研究[J]. 西北工业大学学报, 2023, 41(1): 56-64. doi: 10.3969/j.issn.1000-2758.2023.01.007LI Y F, LYU Y X, SHI J P, et al. UAV’s air combat decision-making based on deep deterministic policy gradient and prediction[J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 56-64 (in Chinese). doi: 10.3969/j.issn.1000-2758.2023.01.007 [49] 张羽白, 肖成方, 邹俊俊, 等. 飞翼布局无人机控制律设计[J]. 测控技术, 2021, 40(1): 123-131.ZHANG Y B, XIAO C F, ZOU J J, et al. Design of flight control law for a flying-wing UAV[J]. Measurement & Control Technology, 2021, 40(1): 123-131(in Chinese). [50] 范力元, 张浩哲, 徐钊, 等. 基于安全飞行走廊的无人机密集障碍规避算法[J]. 西北工业大学学报, 2022, 40(6): 1288-1296. doi: 10.3969/j.issn.1000-2758.2022.06.011FAN L Y, ZHANG H Z, XU Z, et al. A dense obstacle avoidance algorithm for UAVs based on safe flight corridor[J]. Journal of Northwestern Polytechnical University, 2022, 40(6): 1288-1296(in Chinese). doi: 10.3969/j.issn.1000-2758.2022.06.011 [51] 刘宝泉. 机载预警雷达构型探测性能影响分析[J]. 科技创新与应用, 2019, 9(12): 39-40. doi: 10.3969/j.issn.2095-2945.2019.12.016LIU B Q. Analysis on the influence of airborne early warning radar configuration detection performance[J]. Technology Innovation and Application, 2019, 9(12): 39-40(in Chinese). doi: 10.3969/j.issn.2095-2945.2019.12.016 [52] 颜仙荣, 李其虎. 旋转螺旋浆对机载雷达探测性能影响研究[J]. 中国电子科学研究院学报, 2020, 15(2): 141-146. doi: 10.3969/j.issn.1673-5692.2020.02.008YAN X R, LI Q H. Study on effect of the rotating propeller for airborne radar detection performance[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(2): 141-146(in Chinese). doi: 10.3969/j.issn.1673-5692.2020.02.008 [53] 甄子洋, 朱平, 江驹, 等. 基于自适应控制的近空间高超声速飞行器研究进展[J]. 宇航学报, 2018, 39(4): 355-367. doi: 10.3873/j.issn.1000-1328.2018.04.001ZHEN Z Y, ZHU P, JIANG J, et al. Research progress of adaptive control for hypersonic vehicle in near space[J]. Journal of Astronautics, 2018, 39(4): 355-367(in Chinese). doi: 10.3873/j.issn.1000-1328.2018.04.001 [54] 吴宏鑫, 孟斌. 高超声速飞行器控制研究综述[J]. 力学进展, 2009, 39(6): 756-765. doi: 10.3321/j.issn:1000-0992.2009.06.013WU H X, MENG B. Review on the control of hypersonic flight vehicles[J]. Advances in Mechanics, 2009, 39(6): 756-765(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.06.013 [55] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11): 1901-1913. doi: 10.3724/SP.J.1004.2013.01901SUN C Y, MU C X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11): 1901-1913(in Chinese). doi: 10.3724/SP.J.1004.2013.01901 [56] 中华人民共和国航空工业部. 飞行大气参数: HB 6127—1986[S]. 中国: 航空工业部, 1987: 1-498.Ministry of Aviation Industry of the People's Republic of China. Flight atmosphere parameter: HB 6127—1986[S] . China: Ministry of aviation Industry, 1987: 1-498(in Chinese). [57] 肖建德. 大气数据计算机系统[M]. 北京: 国防工业出版社, 1992: 35-45.XIAO J D. Air data computer system[M]. Beijing: National Defense Industry Press, 1992: 35-45(in Chinese). [58] 陈康, 符文星, 闫杰. 不同布局下高超声速飞行器FADS求解精度[J]. 固体火箭技术, 2014, 37(4): 453-457.CHEN K, FU W X, YAN J. Solving accuracy for flush airdate sensing system of hypersonic aircraft under different configuration[J]. Journal of Rocket Technology, 2014, 37(4): 453-457(in Chinese). [59] COBLEIGH B R, WHITMORE S A, HAERING E A, et al. Flush airdata sensing (FADS) system calibration procedures and results for blunt forebodies[C]//Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. [60] 方习高, 陆宇平. 嵌入式大气数据传感系统的求解算法研究[J]. 计算机测量与控制, 2008, 16(3): 398-400.FANG X G, LU Y P. Research on algorithms of flush airdata sensing system[J]. Computer Measurement & Control, 2008, 16(3): 398-400(in Chinese). [61] 方习高. 嵌入式大气数据传感系统的技术及应用研究[D]. 南京: 南京航空航天大学, 2007: 12-15.FANG X G. Research on technology and application of embedded air data sensing system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007: 12-15(in Chinese). [62] 新浪军事. 美军公布B2坠机直接原因: 空速管受潮失灵(图)[EB/OL]. (2008-06-08)[2023-10-01]. http://mil.news.sina.com.cn/p/2008-06-08/1053504376.html.Sina Military. The US military announced the immediate cause of the B-2 crash: the airspeed tube was damp and malfunctioned (with pictures)[EB/OL]. (2008-06-08)[2023-10-01]. http://mil.news.sina.com.cn/p/2008-06-08/1053504376.html(in Chinese). [63] 张颖伟, QIN S J. 复杂工业过程的故障诊断[M]. 沈阳: 东北大学出版社, 2007.ZHANG Y W, QIN S J. Fault diagnosis of complex industrial process[M]. Shenyang: Northeast University Press, 2007(in Chinese). [64] WHTITMORE S A, MOES T R. Failure detection and fault management techniques for a pneumatic high-angle-of-attack flush airdata sensing (HI-FADS) System: NASA TM-4335 [R]. Washington, D. C.: NASA, 1992. [65] 赵磊. 嵌入式大气数据传感系统故障检测与处理算法研究[D]. 南京: 南京航空航天大学, 2010: 33-43.ZHAO L. Research on fault detection and processing algorithm of embedded air data sensing system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 33-43(in Chinese). [66] 马航帅, 雷廷万, 李荣冰, 等. 大迎角下基于信息融合的迎角/侧滑角估计方法[J]. 电光与控制, 2012, 19(8): 1-5. doi: 10.3969/j.issn.1671-637X.2012.08.001MA H S, LEI T W, LI R B, et al. Estimation method for angle-of-attack and sideslip angle based on information fusion at high angle of attack[J]. Electronics Optics & Control, 2012, 19(8): 1-5(in Chinese). doi: 10.3969/j.issn.1671-637X.2012.08.001 [67] LONG H, SONG S J. Method of estimating angle-of-attack and sideslip angel based on data fusion[C]//Proceedings of the 2nd International Conference on Intelligent Computation Technology and Automation. Piscataway: IEEE Press, 2009: 641-644. [68] PERRY J, MOHAMED A, JOHNSON B, et al. Estimating angle of attack and sideslip under high dynamics on small UAVs[C]// Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation. London: Institute of Navigation , 2008: 1165-1173. [69] 马航帅. 基于虚拟大气的大迎角大气数据估计技术研究[D]. 南京: 南京航空航天大学, 2012: 1-59.MA H S. Research on estimation technology of atmospheric data at high angle of attack based on virtual atmosphere[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 1-59(in Chinese). [70] 蒋保睿, 肖地波, 张勇, 等. 融合气象观测数据的高精度大气数据估计算法研究[J]. 计算机测量与控制, 2022, 30(12): 276-283.JIANG B R, XIAO D B, ZHANG Y, et al. High precision air data estimation algorithm with meteorological observation[J]. Computer Measurement & Control, 2022, 30(12): 276-283(in Chinese). [71] 肖地波, 蒋保睿, 刘鹏. 基于FADS/IMU信息融合的大气数据测量方法研究[J]. 测控技术, 2022, 41(9): 50-55.XIAO D B, JIANG B R, LIU P. Research on atmospheric data measurement method based on FADS/IMU information fusion[J]. Measurement & Control Technology, 2022, 41(9): 50-55(in Chinese). [72] 蒋保睿, 刘鹏, 肖地波. 基于UKF的FADS/INS融合大气数据估计[J]. 宇航计测技术, 2022, 42(4): 31-36. doi: 10.12060/j.issn.1000-7202.2022.04.06JIANG B R, LIU P, XIAO D B. Air data estimation of FADS/INS fusion based on UKF[J]. Journal of Astronautic Metrology and Measurement, 2022, 42(4): 31-36(in Chinese). doi: 10.12060/j.issn.1000-7202.2022.04.06 [73] 闫晓婧, 杨涛, 药红红. 国外第六代战斗机概念方案与关键技术[J]. 航空科学技术, 2018, 29(4): 18-26.YAN X J, YANG T, YAO H H. Conceptual scheme and key technologies of sixth generation fighters abroad[J]. Aeronautical Science & Technology, 2018, 29(4): 18-26(in Chinese). [74] 王锴, 丁宇, 何大龙. 第六代战斗机发展动向及能力分析[J]. 光电技术应用, 2019, 34(5): 1-6. doi: 10.3969/j.issn.1673-1255.2019.05.001WANG K, DING Y, HE D L. Development trend and capability analysis of the sixth generation fighter[J]. Electro-Optic Technology Application, 2019, 34(5): 1-6(in Chinese). doi: 10.3969/j.issn.1673-1255.2019.05.001 [75] 赵保军, 陈士涛, 李大喜, 等. 国外六代机发展及作战概念分析[J]. 现代防御技术, 2022, 50(6): 19-25. doi: 10.3969/j.issn.1009-086x.2022.06.003ZHAO B J, CHEN S T, LI D X, et al. Analysis of the sixth generation fighter development and operational concept[J]. Modern Defence Technology, 2022, 50(6): 19-25(in Chinese). doi: 10.3969/j.issn.1009-086x.2022.06.003 -