留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲线梁肋机翼结构气动弹性优化设计

周泉知 杨佑绪 孙录斌 张兴翠 吴逸飞 霍梦文

周泉知,杨佑绪,孙录斌,等. 曲线梁肋机翼结构气动弹性优化设计[J]. 北京航空航天大学学报,2025,51(6):2148-2156 doi: 10.13700/j.bh.1001-5965.2023.0343
引用本文: 周泉知,杨佑绪,孙录斌,等. 曲线梁肋机翼结构气动弹性优化设计[J]. 北京航空航天大学学报,2025,51(6):2148-2156 doi: 10.13700/j.bh.1001-5965.2023.0343
ZHOU Q Z,YANG Y X,SUN L B,et al. Aeroelastic optimization design of SpaRibs wing structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2148-2156 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0343
Citation: ZHOU Q Z,YANG Y X,SUN L B,et al. Aeroelastic optimization design of SpaRibs wing structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2148-2156 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0343

曲线梁肋机翼结构气动弹性优化设计

doi: 10.13700/j.bh.1001-5965.2023.0343
基金项目: 

江西省“双千计划”人才项目(CK202006470)

详细信息
    通讯作者:

    E-mail:zgdy_1@163.com

  • 中图分类号: V221.47

Aeroelastic optimization design of SpaRibs wing structure

Funds: 

Jiangxi province "Double Thousand Plan" talent project (CK202006470)

More Information
  • 摘要:

    传统飞机机翼内部一般采用直线梁肋结构,使用曲线梁肋(SpaRibs)结构能够大大拓展机翼结构设计空间,进一步提升机翼的气动弹性性能。针对链接形状法(LSM)不易自动建模问题,提出使用投影映射方法进行2次空间转换,实现曲线梁肋机翼自动建模。基于遗传算法提出1种曲线梁肋机翼气动弹性综合优化设计方法。使用超声速偶极子格网法计算非定常气动力,采用模态法进行静气动弹性分析,在考虑颤振速度、静气动弹性变形约束的情况下,开展优化设计。某飞翼飞行器综合优化设计算例表明,使用曲线梁肋结构的机翼在重量增幅为1.321%的基础上,颤振速度可提高20.34%;在曲线梁肋构型的基础上进一步进行尺寸参数优化,在满足特定约束条件下,相较于初始构型减重21.76%;综合曲线梁肋构型参数和尺寸参数进行综合(一步)优化,相较于初始构型减重可达26.44%。使用曲线梁肋设计优化和尺寸优化相结合的情况下机翼能够有效地减轻机翼重量,为飞翼式飞行器的结构总体设计提供了一种快速有效的气动弹性综合优化设计方法。

     

  • 图 1  B样条曲线

    Figure 1.  B-spline curve

    图 2  单位空间内曲线梁肋布置方式

    Figure 2.  Layout of SpaRibs in unit space

    图 3  单位空间向机翼平面空间转换

    Figure 3.  Transformation from unit space to wing plane space

    图 4  透视变换

    Figure 4.  Perspective transformation

    图 5  机翼平面空间向三维空间的转换

    Figure 5.  Transformation from wing plane space to three-dimensional space

    图 6  遗传算法流程

    Figure 6.  Process of genetic algorithm

    图 7  飞翼有限元模型

    Figure 7.  Finite element model of flying wing

    图 8  飞翼气动网格

    Figure 8.  Aerodynamic mesh of flying wing

    图 9  最优的曲线梁肋构型图

    Figure 9.  Optimal SpaRibs configuration

    图 10  机翼结构部分划分

    Figure 10.  Division of aircraft wing structure

    图 11  个体适应度进化历程

    Figure 11.  Fitness evaluation history of individuals

    图 12  优化D的最优曲线梁肋构型

    Figure 12.  Optimal SpaRibs configuration of optimization D

    表  1  定义一组曲线梁肋与单位空间关系的参数

    Table  1.   Parameters defining relationship between a set of SpaRibs to unit space

    参数定义
    p1曲线梁肋的数量
    p2η1
    p3η2
    p4ξ12/ξ11
    p5ξ22/ξ21
    p6ξ32/ξ31
    下载: 导出CSV

    表  2  飞翼平面形状几何参数

    Table  2.   Geometric parameters of flying wing plane shape

    定义 参数
    半翼展/m 4.57
    翼根弦长/m 5.53
    转折处弦长/m 2.55
    翼尖弦长/m 1.7
    转折处翼展/m 2.02
    前缘后掠角/(°) 35
    下载: 导出CSV

    表  3  曲线梁肋形状参数变化范围

    Table  3.   Boundary of shape parameters of SpaRibs

    数值类型 p1 p2 p3 p4 p5 p6
    最小值 定值 0.05 0.05 0.25 0.25 0.25
    最大值 定值 0.95 0.95 4 4 4
     注:p1表示曲线梁肋的数量,是预先设定的定值,没有变化范围,具体值根据翼盒中梁肋的数量来确定。
    下载: 导出CSV

    表  4  尺寸参数参考范围

    Table  4.   Boundary of size parameters mm

    类型 最小值 最大值
    曲线梁肋 0.5 3
    蒙皮 0. 5 2.5
    凸缘 0.5 3
    下载: 导出CSV

    表  5  形状尺寸综合优化最优个体

    Table  5.   Optimal individual of comprehensive shape and size optimization

    优化结果 最大遗传代数 种群大小 颤振速度/(m·s−1) 翼尖变形/% 翼尖扭角/(°) 质量/kg 最大应力/MPa
    A 20 20 816.09 4.24 −1.47 741.90 270.60
    B 40 20 800.71 4.14 −1.41 780.08 261.38
    C 40 30 802.27 4.07 −1.44 715.47 238.10
    D 70 30 800.49 4.03 −1.46 706.17 280.63
    下载: 导出CSV
  • [1] MULANI S, LOCATELLI D, KAPANIA R. Algorithm development for optimization of arbitrary geometry panels using curvilinear stiffeners[C]// Processings of the th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010.
    [2] LOCATELLI D, MULANI S B, KAPANIA R K. Wing-Box weight optimization using curvilinear spars and ribs (SpaRibs)[J]. Journal of Aircraft, 2011, 48(5): 1671-1684. doi: 10.2514/1.C031336
    [3] LOCATELLI D, MULANI S, KAPANIA R, et al. A multidisciplinary analysis optimization (MDAO) environment for wings having SpaRibs[C]//Processings of the 53th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012.
    [4] LOCATELLI D. Optimization of supersonic aircraft wing-box using curvilinear SpaRibs[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2012: 22-75.
    [5] LOCATELLI D, MULANI S B, KAPANIA R K. Parameterization of curvilinear spars and ribs for optimum wing structural design[J]. Journal of Aircraft, 2014, 51(2): 532-546. doi: 10.2514/1.C032249
    [6] LOCATELLI D, YEILAGHI TAMIJANI A, MULANI S B, et al. Multidisciplinary optimization of supersonic wing structures using curvilinear spars and ribs (SpaRibs)[C]// Processings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
    [7] LIU Q, MULANI S B, KAPANIA R K. Global/local multidisciplinary design optimization of subsonic wing[C]// Processings of the 10th AIAA Multidisciplinary Design Optimization Conference. Reston: AIAA, 2014.
    [8] LIU Q, JRAD M, MULANI S B, et al. Integrated global wing and local panel optimization of aircraft wing[C]// Processings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015.
    [9] ROBINSON J H, DOYLE S, OGAWA G, et al. Aeroservoelastic optimization of wing structure using curvilinear spars and ribs (SpaRibs) [C]// Processings of the 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2016.
    [10] ZHAO W, KAPANIA R K. Multiobjective optimization of composite flying-wings with SpaRibs and multiple control surfaces[C]// Processings of the 2018 Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2018.
    [11] ZHAO W. Optimal design and analysis of Bio-Inspired, curvilinearly stiffened composite flexible wings[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2017.
    [12] ZHAO W, KAPANIA R K. Bilevel programming weight minimization of composite flying-wing aircraft with curvilinear spars and ribs[J]. AIAA Journal, 2019, 57(6): 2594-2608. doi: 10.2514/1.J057892
    [13] DE S, JRAD M, KAPANIA R K. Structural optimization of internal structure of aircraft wings with curvilinear spars and ribs[J]. Journal of Aircraft, 2019, 56(2): 707-718. doi: 10.2514/1.C034818
    [14] 徐元铭, 王东. 曲线片型加筋壁板的稳定性优化设计[J]. 北京航空航天大学学报, 2015, 41(4): 567-573.

    XU Y M, WANG D. Design and optimization of improving stability of curvilinear blade-stiffened panels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 567-573 (in Chinese).
    [15] 张坤鹏, 郝鹏, 段于辉, 等. 基于深度学习的多级曲线加筋壁板布局优化设计[J]. 中国舰船研究, 2021, 16(4): 86-95.

    ZHANG K P, HAO P, DUAN Y H, et al. Layout optimization design of hierarchical curvilinearly stiffened panels based on deep learning[J]. Chinese Journal of Ship Research, 2021, 16(4): 86-95 (in Chinese).
    [16] SALOMON D. Curves and surfaces for computer graphics[M]. New York: Springer, 2006.
    [17] 李一航, 周东兴, 韩东升. 一种基于透视变换的远距离双目测距方法[J]. 电子测量技术, 2021, 44(7): 93-99.

    LI Y H, ZHOU D X, HAN D S. Long-distance binocular ranging method based on perspective transformation[J]. Electronic Measurement Technology, 2021, 44(7): 93-99 (in Chinese).
    [18] HOLLAND J H. Adaptation in natural and artificial systems[M]. Cambridge: The MIT Press, 1992: 1-50.
    [19] HAFTKA R T, GURDAL Z. Penalty function method, elements of structural optimization [M]. London: Kluwer Academic Publishers, 1992: 186-198.
    [20] GEN M, CHENG R. Genetic algorithm and engineering design[M]. New York: John Wiley&Sons, 1997: 21-30.
    [21] 陆依斐. 美新型轰炸机B-21亮相[N]. 解放日报, 2022-12-05(008).

    LU Y F. US new bomber B-21 appears[N]. Liberation Daily, 2022-12-05(008)(in Chinese).
    [22] 马俊, 郭媛丹, 李雪, 等. 美防长冲着中国炫耀军力[N]. 环球时报, 2022-12-05(1).

    MA J, GUO Y D, LI X, et al. US defense minister showing off military power to China [N]. Global Times, 2022-12-05(1)(in Chinese).
    [23] 魏伟, 肖东风. 大国争相研制新一代隐形轰炸机[N]. 环球时报, 2022-12-03(4).

    WEI W, XIAO D F. Great powers vying to develop a new generation of stealth bombers[N]. Global Times, 2022-12-03(4)(in Chinese).
    [24] 杨佑绪, 吴志刚, 杨超. 飞翼结构构型气动弹性优化设计方法[J]. 航空学报, 2013, 34(12): 2748-2756. doi: 10.7527/S1000-6893.2013.0353

    YANG Y X, WU Z G, YANG C. An aeroelastic optimization design approach for structural configuration of flying wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2748-2756 (in Chinese). doi: 10.7527/S1000-6893.2013.0353
    [25] YANG Y X, WU Z G, YANG C. Equivalent plate modeling for complex wing configurations[J]. Procedia Engineering, 2012, 31: 409-415. doi: 10.1016/j.proeng.2012.01.1044
    [26] 杨佑绪. 面向机翼构型的气动弹性综合设计方法研究[D]. 北京: 北京航空航天大学, 2013: 57-58.

    YANG Y X. Wing Configuration oriented aeroelastic integrated design method study[D]. Beijing: Beihang University, 2013: 57-58(in Chinese).
    [27] 万志强, 刘东岳, 唐长红, 等. 大型飞机翼梁位置对气动弹性优化的影响研究[J]. 中国科学: 技术科学, 2012, 42(3): 352-358.

    WAN Z Q, LIU D Y, TANG C H, et al. Study on the influence of wing beam position on aeroelastic optimization of large aircraft[J]. Scientia Sinica (Technologica), 2012, 42(3): 352-358 (in Chinese).
    [28] JRAD M, DE S, KAPANIA R K. Global-local aeroelastic optimization of internal structure of transport aircraft wing[C]// Processings of the 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017.
    [29] LIU Q. EBF3GLWingOpt: a framework for multidisciplinary design optimization of wings using SpaRibs[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2017.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  58
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 录用日期:  2023-10-27
  • 网络出版日期:  2023-11-29
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答