留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应积分电容的高动态像素结构

刘绥阳 郭仲杰 余宁梅 许睿明

刘绥阳,郭仲杰,余宁梅,等. 基于自适应积分电容的高动态像素结构[J]. 北京航空航天大学学报,2025,51(6):2051-2059 doi: 10.13700/j.bh.1001-5965.2023.0349
引用本文: 刘绥阳,郭仲杰,余宁梅,等. 基于自适应积分电容的高动态像素结构[J]. 北京航空航天大学学报,2025,51(6):2051-2059 doi: 10.13700/j.bh.1001-5965.2023.0349
LIU S Y,GUO Z J,YU N M,et al. Structure of highly dynamic pixel based on adaptive integral capacitance[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2051-2059 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0349
Citation: LIU S Y,GUO Z J,YU N M,et al. Structure of highly dynamic pixel based on adaptive integral capacitance[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2051-2059 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0349

基于自适应积分电容的高动态像素结构

doi: 10.13700/j.bh.1001-5965.2023.0349
基金项目: 

国家自然科学基金(62171367);陕西省重点研发计划(2021GY-060);陕西省创新能力支撑计划(2022TD-39);西安理工大学校企协同基金(252062213);西安理工大学博士创新基金(103-252072401)

详细信息
    通讯作者:

    E-mail:zjguo@xaut.edu.cn

  • 中图分类号: TN47

Structure of highly dynamic pixel based on adaptive integral capacitance

Funds: 

National Natural Science Foundation of China (62171367); Key Research and Development Program of Shaanxi (2021GY-060); Innovation Capability Support Program of Shaanxi (2022TD-39); Xi’an University of Technology School Enterprise Collaborative Foundation (252062213); Doctoral Innovation Fund of Xi’an University of Technology (103-252072401)

More Information
  • 摘要:

    由于红外图像传感技术具备不受环境影响、目标识别度好、抗干扰能力强等优点而受到广泛关注,但随着红外焦平面集成度的提升,光电系统的动态范围、噪声和满阱之间的制约关系尤为突出。为解决弱光下噪声和强光下满阱容量的矛盾,在5T红外像素电路中,利用反型MOS电容在特定电压区间内电容值和电压的关系,使红外图像传感器积分电容从6.5 fF到37.5 fF自动变化,提出一种基于自适应积分电容的高动态像素结构,并基于55 nm CMOS工艺技术,在12 288×12 288像素规模的红外图像传感器中研究其性能参数。结果表明:5.5 μm×5.5 μm的小尺寸像素具有1.31 Me的大满阱容量和可变的转换增益,噪声电子数小于0.43 e,动态范围超过130 dB。

     

  • 图 1  MOS电容的容值随Vgs的变化而变化曲线

    Figure 1.  The capacitance value of the MOS capacitor varies with changes in the Vgs

    图 2  基于自适应积分电容的CMOS红外图像传感器的基本架构

    Figure 2.  Basic architecture of a CMOS infrared image sensor based on adaptive integral capacitance

    图 3  像素的时序图

    Figure 3.  Timing diagram of pixel

    图 4  2×2像素版图

    Figure 4.  2 × 2 pixel layout

    图 5  自适应积分电容的红外图像传感器整体电路设计和版图设计

    Figure 5.  Overall circuit design and layout design of infrared image sensor with adaptive integral capacitance

    图 6  采用自适应电容的5T红外像素在10~50 pA和50~500 pA光电流下的列线信号

    Figure 6.  Line signal of a 5T infrared pixel using adaptive capacitance under photocurrent of 10−50 pA and 50−500 pA

    图 7  采用自适应电容的5T红外像素的CDS信号和转换增益随光电流变化的曲线

    Figure 7.  Variation of CDS signal of 5T infrared pixel using adaptive capacitance and conversion gain with photocurrent

    图 8  采用自适应电容的5T红外像素的噪声和噪声电子数曲线

    Figure 8.  Noise and noise electronic number of 5T infrared pixel using adaptive capacitance

    图 9  采用自适应电容和6.5 fF、37.5 fF固定电容作5T红外像素的积分电容时CDS信号随光电流变化的曲线

    Figure 9.  Variation of CDS signal using adaptive capacitance and fixed capacitance of 6.5 fF and 37.5 fF as integral capacitance of 5T infrared pixel with photocurrent

    图 10  采用自适应电容和6.5 fF、37.5 fF固定电容作5T红外像素的积分电容的满阱容量和噪声

    Figure 10.  Full well capacity and noise of using adaptive capacitance and fixed capacitance of 6.5 fF and 37.5 fF as integral capacitance of 5T infrared pixel

    表  1  C1C2C3的阈值电压

    Table  1.   Threshold voltage of C1, C2, and C3

    MOS管类型Vth/V
    C10.62
    C20.40
    C30.30
    下载: 导出CSV

    表  2  5T红外像素电路的后仿真性能参数

    Table  2.   Post-simulation performance parameters of 5T infrared pixel circuit

    光电流/pA 线性度/% 转换增益/
    (μV·(e)−1)
    噪声
    电子数/e
    动态
    范围/dB
    满阱容量/
    Me
    10~ 50 97.5 110~24.8 0.43~2.2 130~116 1.31
    50 ~500 96.6 24.8~6.5
    下载: 导出CSV

    表  3  图像传感器的性能对比

    Table  3.   Performance comparison of image sensors

    方法 工艺
    条件/
    nm
    像素尺寸/
    (μm×μm)
    噪声
    电子数/
    e
    满阱
    容量/
    Me
    采用方法 动态范围/
    dB
    [11] 180 16×16 7.6 24.3 横向溢流集成
    沟槽电容器
    130
    [12] 2.9×2.9 0.78 0.06 新的光电
    二极管结构
    97
    [16] 65 22×22 61 0.3 双曝光电荷
    相减法
    74
    [18] 180 10.5×8.5 线性-对数像素 152
    [21] 15×15 6 0.6 自适应调整
    积分时间
    100
    本文 55 5.5×5.5 0.43~2.2 1.31 自适应积分
    电容
    130~116
    下载: 导出CSV
  • [1] SEO M W, CHU M, JUNG H Y, et al. A 2.6 e-rms low-random-noise, 116.2 mW low-power 2-mp global shutter CMOS image sensor with pixel-level ADC and in-pixel memory[C]//Proceedings of the 2021 Symposium on VLSI Circuits. Piscataway: IEEE Press, 2021: 1-2.
    [2] KIM M S, KANG D U, LEE D H, et al. Fast signal transfer in a large-area X-ray CMOS image sensor[J]. Journal of Instrumentation, 2014, 9(8): P08011. doi: 10.1088/1748-0221/9/08/P08011
    [3] XU J T, LI W, NIE K M, et al. A method to reduce the effect on image quality caused by resistance of column bus[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 27(1): 173-181.
    [4] KIM H J, HWANG S I, KWON J W, et al. A delta-readout scheme for low-power CMOS image sensors with multi-column-parallel SAR ADCs[J]. IEEE Journal of Solid-State Circuits, 2016, 51(10): 2262-2273. doi: 10.1109/JSSC.2016.2581819
    [5] PARK H, YU C Z, KIM H, et al. Low power CMOS image sensors using two step single slope ADC with bandwidth-limited comparators & voltage range extended ramp generator for battery-limited application[J]. IEEE Sensors Journal, 2020, 20(6): 2831-2838. doi: 10.1109/JSEN.2019.2957043
    [6] NIE K M, ZHA W B, SHI X L, et al. A single slope ADC with row-wise noise reduction technique for CMOS image sensor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(9): 2873-2882. doi: 10.1109/TCSI.2020.2979321
    [7] PARK I, JO W, PARK C, et al. A 640 × 640 fully dynamic CMOS image sensor for always-on operation[J]. IEEE Journal of Solid-State Circuits, 2020, 55(4): 898-907.
    [8] CHEUNG V, WESTLAND S, THOMSON M. Accurate estimation of the nonlinearity of input/output response for color cameras[J]. Color Research & Application, 2004, 29(6): 406-412.
    [9] ZAITSU K, MATSUMOTO A, NISHIDA M, et al. A 2-layer transistor pixel stacked CMOS image sensor with oxide-based full trench isolation for large full well capacity and high quantum efficiency[C]//Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits. Piscataway: IEEE Press, 2022: 286-287.
    [10] KIM H, KIM Y H, MOON S, et al. A 0.64 μm 4-photodiode 1.28 μm 50 Mpixel CMOS image sensor with 0.98e- temporal noise and 20Ke- full-well capacity employing quarter-ring source-follower[C]//Proceedings of the 2023 IEEE International Solid-State Circuits Conference. Piscataway: IEEE Press, 2023: 1-3.
    [11] MURATA M, KURODA R, FUJIHARA Y, et al. A high near-infrared sensitivity over 70-dB SNR CMOS image sensor with lateral overflow integration trench capacitor[J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1653-1659. doi: 10.1109/TED.2020.2975602
    [12] UCHIDA T, YAMASHITA K, MASAGAKI A, et al. A 2.9 μm pixel CMOS image sensor for security cameras with high FWC and 97 dB single-exposure dynamic range[C]//Proceedings of the 2021 IEEE International Electron Devices Meeting. Piscataway: IEEE Press, 2021: 30.3.1-30.3.4.
    [13] GOTO M, HONDA Y, NANBA M, et al. Pixel-parallel three-layer stacked CMOS image sensors using double-sided hybrid bonding of SOI wafers[J]. IEEE Transactions on Electron Devices, 2023, 70(9): 4705-4711. doi: 10.1109/TED.2023.3298308
    [14] SUN K Y, PAN L Y, WU D, et al. A gate-controlled lateral thyristor-based pixel with low-light-level extension for high dynamic range applications[J]. IEEE Sensors Journal, 2022, 22(24): 23856-23865. doi: 10.1109/JSEN.2022.3221808
    [15] ZHUO Y, LU W G, YU S Z, et al. A low-noise CTIA-based pixel with CDS for SWIR focal plane arrays[C]//Proceedings of the 2021 6th International Conference on Integrated Circuits and Microsystems. Piscataway: IEEE Press, 2021: 258-262.
    [16] QIAN X Y, YU H, CHEN S S, et al. A high dynamic range CMOS image sensor with dual-exposure charge subtraction scheme[J]. IEEE Sensors Journal, 2015, 15(2): 661-662. doi: 10.1109/JSEN.2014.2365173
    [17] WOCIAL T, STEFANOV K D, MARTIN W E, et al. A method to achieve high dynamic range in a CMOS image sensor using interleaved row readout[J]. IEEE Sensors Journal, 2022, 22(22): 21619-21627. doi: 10.1109/JSEN.2022.3211152
    [18] KUO K C. A novel linear-logarithmic active pixel CMOS image sensor with wide dynamic range[C]//Proceedings of the 2021 IEEE International Midwest Symposium on Circuits and Systems. Piscataway: IEEE Press, 2021: 1100-1103.
    [19] WANG F, HAN L Q, THEUWISSEN A J P. Development and evaluation of a highly linear CMOS image sensor with a digitally assisted linearity calibration[J]. IEEE Journal of Solid-State Circuits, 2018, 53(10): 2970-2981. doi: 10.1109/JSSC.2018.2856252
    [20] ZHANG Q, GUO Z J. An 8T global shutter pixel with extended output range for CMOS image sensor[C]//Proceedings of the 2019 IEEE International Conference on Electron Devices and Solid-State Circuits. Piscataway: IEEE Press, 2019: 1-3.
    [21] KUZNETSOV P A, MOSCHEV I S. Photodetector of shortwave infrared range of format 640 × 512 elements with increased dynamic range[J]. Journal of Communications Technology and Electronics, 2019, 64(9): 1034-1037. doi: 10.1134/S1064226919090146
    [22] KAVUSI S, GHOSH K, EL GAMAL A. Architectures for high dynamic range, high speed image sensor readout circuits[M]//DE MICNELI G, MIR S, REIS R. VLSI-SoC: research trends in VLSI and systems on chip. Berlin: Springer, 2008: 1-23.
    [23] GUO Y M, GUO Z J, WANG Y L, et al. Research on dark current compensation method of analog front end based on synchronous adaptive matching[C]//Proceedings of the 2023 6th International Conference on Electronics Technology. Piscataway: IEEE Press, 2023: 31-35.
    [24] WANG F, THEUWISSEN A J P. Pixel optimizations and digital calibration methods of a CMOS image sensor targeting high linearity[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(3): 930-940. doi: 10.1109/TCSI.2018.2872627
    [25] LOU S S, QU Y, ZHONG G Q, et al. An over 140 dB dynamic range CMOS image sensor combined DCG and logarithmic response[J]. IEEE Transactions on Electron Devices, 2023, 70(9): 4719-4724. doi: 10.1109/TED.2023.3299907
    [26] GAO Z Y, YANG C J, XU J T, et al. A dynamic range enhanced readout technique with a two-step TDC for high speed linear CMOS image sensors[J]. Sensors, 2015, 15(11): 28224-28243. doi: 10.3390/s151128224
    [27] 杜雅娟, 高静, 高志远, 等. 基于自对准技术的4管像素寄生电容建模与分析[J]. 激光与光电子学进展, 2023, 60(19): 210-216.

    DU Y J, GAO J, GAO Z Y, et al. Modeling and analysis of parasitic capacitance in 4-transistor pixels based on self-alignment technique[J]. Laser & Optoelectronics Progress, 2023, 60(19): 210-216(in Chinese).
    [28] GUO Z, YU N, WU L. An improved global shutter pixel with extended output range and linearity of compensation for CMOS image sensor[J]. Chinese Journal of Electronics, 2021, 30(1): 102-108. doi: 10.1049/cje.2020.11.007
    [29] GUO Z J, YU N M, WU L S. A synchronous driving approach based on adaptive delay phase-locked loop for stitching CMOS image sensor[J]. IEICE Electronics Express, 2020, 17(3): 20190642. doi: 10.1587/elex.16.20190642
    [30] GUO Z J, YU N M, WU L S. Research on column FPN and black level calibration in large array CMOS image sensor[J]. Chinese Journal of Electronics, 2021, 30(2): 268-274. doi: 10.1049/cje.2021.02.004
    [31] GUO Z J, YU N M, WU L S. An improved segmented DAC for column readout circuit correction of large array CMOS image sensor[J]. IEICE Electronics Express, 2020, 17(10): 20200094. doi: 10.1587/elex.17.20200094
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  48
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 录用日期:  2023-08-24
  • 网络出版日期:  2023-09-08
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答