-
摘要:
针对中心分级环形燃烧室液雾点熄火问题,对环形模型燃烧室进行了试验研究。在由16个中心分级燃烧室头部组成的环形模型燃烧室中,在常温常压条件下,对航空煤油RP-3的液雾点熄火过程进行了试验研究。试验测试了该环形燃烧室的点火和熄火边界,获得了贫油点火和熄火边界曲线。在燃烧室压降0.5%~3%范围内,随着压降增大,点火边界油气比呈先降低后升高的趋势,熄火边界油气比随压降增大逐渐降低后基本保持恒定。研究结果表明:通过在燃烧室头部安装导流环能够有效降低环形燃烧室贫油点火边界。使用单反相机记录了环形燃烧室点火和熄火过程,不同压降下的火焰周向传播相似,火焰传播存在周向不对称性,头部熄火顺序则与燃油均匀性相关。
Abstract:An experimental study of an annular model combustor was conducted to investigate spray ignition and blow-out problems in a centrally staged annular combustor. In the annular model combustor composed of 16 centrally staged injectors, the spray ignition and blow-out process of aviation kerosene RP-3 was experimentally studied under atmospheric temperature and pressure. Within the range of 0.5%–3% of the pressure drop in the combustor, with the increase in the pressure drop, the fuel-air ratio of the ignition boundary first decreases and then increases, while the fuel-air ratio of the blow-out boundary gradually decreases and then remains constant. The research results show that the lean oil ignition boundary of the annular combustor can be significantly improved by installing the flow deflector at the injectors. The ignition and blow-out process of the annular combustor is recorded with a digital single lens reflex. The circumferential propagation of flame is similar under different pressure drops, and the flame propagation is circumferential asymmetry. The blow-out sequence of the injector is related to the fuel uniformity.
-
Key words:
- annular combustor /
- centrally staged /
- spray flame /
- ignition /
- blow-out
-
-
[1] BOURGOUIN J F, DUROX D, SCHULLER T, et al. Ignition dynamics of an annular combustor equipped with multiple swirling injectors[J]. Combustion and Flame, 2013, 160(8): 1398-1413. doi: 10.1016/j.combustflame.2013.02.014 [2] PHILIP M, BOILEAU M, VICQUELIN R, et al. Large eddy simulations of the ignition sequence of an annular multiple-injector combustor[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3159-3166. doi: 10.1016/j.proci.2014.07.008 [3] PRIEUR K, DUROX D, BEAUNIER J, et al. Ignition dynamics in an annular combustor for liquid spray and premixed gaseous injection[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3717-3724. doi: 10.1016/j.proci.2016.08.008 [4] MACHOVER E, MASTORAKOS E. Experimental investigation on spark ignition of annular premixed combustors[J]. Combustion and Flame, 2017, 178: 148-157. doi: 10.1016/j.combustflame.2017.01.013 [5] MACHOVER E, MASTORAKOS E. Spark ignition of annular non-premixed combustors[J]. Experimental Thermal and Fluid Science, 2016, 73: 64-70. doi: 10.1016/j.expthermflusci.2015.09.008 [6] 令狐昌鸿, 王高峰, 钟亮, 等. 环形旋流燃烧室模型点火过程的实验[J]. 航空动力学报, 2018, 33(7): 1767-1778.LINGHU C H, WANG G F, ZHONG L, et al. Experiment on ignition process in annular swirling combustor model[J]. Journal of Aerospace Power, 2018, 33(7): 1767-1778(in Chinese). [7] 叶沉然, 王高峰, 马承飚, 等. 斜喷环流环形燃烧室点火实验研究[J]. 工程热物理学报, 2018, 39(11): 2549-2558.YE C R, WANG G F, MA C B, et al. Experimental investigations of ignition process in an annular combustor with circumferential flow via oblique injection[J]. Journal of Engineering Thermophysics, 2018, 39(11): 2549-2558(in Chinese). [8] 叶沉然, 王高峰, 方元祺, 等. 涡轮导叶对环形燃烧室点火的影响[J]. 燃烧科学与技术, 2020, 26(1): 75-80.YE C R, WANG G F, FANG Y Q, et al. Ignition dynamics in annular combustor with turbine guide vanes[J]. Journal of Combustion Science and Technology, 2020, 26(1): 75-80 (in Chinese). [9] 张弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J] 航空学报, 2014, 35(2): 332-350.ZHANG C, LIN Y Z, XU H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 332-350(in Chinese). [10] KOBAYASHI M, OGATA H, ODA T, et al. Improvement on ignition performance for a lean staged low NOx combustor[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2012: 997-1004. [11] WILLIAM R R. Experimental investigations into high-altitude relight of a gas turbine[D]. Cambridge: University of Cambridge, 2008. [12] WANG B, ZHANG C, LIN Y Z, et al. Influence of main swirler vane angle on the ignition performance of TeLESS-II combustor[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(1): 011501. doi: 10.1115/1.4034154 [13] MATSUYAMA R, KOBAYASHI M, OGATA H, et al. Development of a lean staged combustor for small aero-engines[C]//ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2013: 211-218. [14] FU Z B, LIN Y Z, LI L, et al. Experimental and numerical studies of a lean-burn internally-staged combustor[J]. Chinese Journal of Aeronautics, 2014, 27(3): 488-496. doi: 10.1016/j.cja.2013.12.017 [15] WANG Z C, LIN Y Z, WANG J C, et al. Experimental study on NOx emission correlation of fuel staged combustion in a LPP combustor at high pressure based on NO-chemiluminescence[J]. Chinese Journal of Aeronautics, 2020, 33(2): 550-560. doi: 10.1016/j.cja.2019.09.004 [16] GAO W, YANG J H, LIU F Q, et al. Experimental investigation on the flame propagation pattern of a staged partially premixed annular combustor[J]. Combustion and Flame, 2021, 230: 111445. doi: 10.1016/j.combustflame.2021.111445 [17] GAO W, YANG J H, MU Y, et al. Experimental investigation on spark ignition of a staged partially premixed annular combustor[J]. Fuel, 2021, 302: 121062. doi: 10.1016/j.fuel.2021.121062 [18] 丁国玉, 马丹, 高雅, 等. 某型全环燃烧室点火特性试验[J]. 航空动力学报, 2023, 38(6): 1299-1305.DING G Y, MA D, GAO Y, et al. Experiment on ignition performance of a full annular combustor[J]. Journal of Aerospace Power, 2023, 38(6): 1299-1305 (in Chinese). [19] MA J L, HUI X, HAN X, et al. The effect and mechanism of the flow deflector on ignition performance of the centrally staged combustor[J]. Physics of Fluids, 2023, 35(2): 027113. doi: 10.1063/5.0139145 [20] 王延胜, 林宇震, 李林, 等. 中心分级燃烧室点火性能试验研究[J]. 推进技术, 2016, 37(1): 98-104.WANG Y S, LIN Y Z, LI L, et al. Experimental investigation on ignition performance of internally-staged combustor[J]. Journal of Propulsion Technology, 2016, 37(1): 98-104 (in Chinese). [21] 陈坚, 李建中, 袁丽, 等. 雾化特性对喷雾燃烧点火过程的影响[J]. 推进技术, 2017, 38(6): 1318-1326.CHEN J, LI J Z, YUAN L, et al. Effects of spray characteristics on ignition process in spray combustion[J]. Journal of Propulsion Technology, 2017, 38(6): 1318-1326 (in Chinese). [22] 张永良, 王宝瑞, 孔文俊, 等. 离心喷嘴实验与流场结构的数值模拟[J]. 工程热物理学报, 2013, 34(4): 760-764.ZHANG Y L, WANG B R, KONG W J, et al. Experiment and numerical studies on the flow field of a pressure atomizer[J]. Journal of Engineering Thermophysics, 2013, 34(4): 760-764(in Chinese). [23] 中国燃气涡轮研究院, 中国航空综合技术研究所, 沈阳发动机设计研究所. 航空燃气涡轮发动机燃烧室性能试验方法: HB 7485—2012[S] . 北京: 中国航空综合技术研究所, 2013.AECC Sichuan Gas Turbine Establishment, AVIC China Aero-polytechnology Establishment, AVIC Shenyang Aircraft Design and Research Institute. Performance test method of combustor for aircraft gas turbine engine: HB 7485—2012[S]. Beijing: AVIC China Aero-polytechnology Establishment, 2013(in Chinese). [24] 李海涛, 许全宏, 付镇柏, 等. 中心分级燃烧室预燃级贫油熄火性能试验[J]. 航空动力学报, 2014, 29(9): 2188-2194.LI H T, XU Q H, FU Z B, et al. Experiment on lean blow-out performance of pilot stage in internally-staged combustor[J]. Journal of Aerospace Power, 2014, 29(9): 2188-2194(in Chinese). [25] XIA Y F, LINGHU C H, ZHENG Y, et al. Experimental investigation of the flame front propagation characteristic during light-round ignition in an annular combustor[J]. Flow, Turbulence and Combustion, 2019, 103(1): 247-269. doi: 10.1007/s10494-019-00018-y [26] ZHAO D M, XIA Y F, GE H W, et al. Simulations of flame propagation during the ignition process in an annular multiple-injector combustor[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 29(6): 1947-1964. [27] WANG H, ZHONG L, BARAKAT E, et al. Experimental investigation on the ignition dynamics of an annular combustor with multiple centrally staged swirling burners[J]. Physics of Fluids, 2022, 34(7): 075103. doi: 10.1063/5.0095756 -