留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人-车-智共享道路空间行人安全行为建模方法

仵若玙 杨德真 任羿 贾露露 李晓宾 王自力

仵若玙,杨德真,任羿,等. 人-车-智共享道路空间行人安全行为建模方法[J]. 北京航空航天大学学报,2025,51(6):2099-2105 doi: 10.13700/j.bh.1001-5965.2023.0370
引用本文: 仵若玙,杨德真,任羿,等. 人-车-智共享道路空间行人安全行为建模方法[J]. 北京航空航天大学学报,2025,51(6):2099-2105 doi: 10.13700/j.bh.1001-5965.2023.0370
WU R Y,YANG D Z,REN Y,et al. Modelling method for pedestrian safety behavior in shared road spaces of pedestrian-traditional vehicle-autonomous vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2099-2105 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0370
Citation: WU R Y,YANG D Z,REN Y,et al. Modelling method for pedestrian safety behavior in shared road spaces of pedestrian-traditional vehicle-autonomous vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2099-2105 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0370

人-车-智共享道路空间行人安全行为建模方法

doi: 10.13700/j.bh.1001-5965.2023.0370
基金项目: 

可靠性与环境工程技术重点实验室基金(6142004210108)

详细信息
    通讯作者:

    E-mail:09967@buaa.edu.cn

  • 中图分类号: U491.2+26;X951

Modelling method for pedestrian safety behavior in shared road spaces of pedestrian-traditional vehicle-autonomous vehicle

Funds: 

Science &Technology on Reliability & Enviromental Engineering Laboratory (6142004210108)

More Information
  • 摘要:

    在未来自动驾驶汽车将与传统交通参与者共享道路资源的发展背景下,对人-车-智共享道路空间中的行人安全行为建模,对于自动驾驶汽车的仿真开发和可靠性、安全性测试等工作至关重要。针对该需求,分析行人的安全运动行为,在此基础上改进传统的行人社会力模型,提出共享道路空间中行人与周围其他行人、传统车辆和自动驾驶汽车交互运动的动量模型;采用人-车交互运动的数据集和遗传算法对模型的安全参数进行标定,并搭建典型的共享道路空间场景以验证模型的有效性。仿真结果表明:所提模型能够模拟出行人真实的安全运动行为,用于人-车-智共享道路空间仿真等任务中的模拟效果更佳。

     

  • 图 1  行人交互运动的行为变化过程

    Figure 1.  Process of pedestrian interaction behavior

    图 2  共享道路空间中的行人动量模型

    Figure 2.  Pedestrian momentum model in shared road spaces

    图 3  车辆安全轮廓

    Figure 3.  Safety profile of vehicle

    图 4  遗传算法标定流程

    Figure 4.  Calibration process of genetic algorithm

    图 5  遗传算法标定结果

    Figure 5.  Calibration result of genetic algorithm

    图 6  人-车-智共享道路空间场景

    Figure 6.  Shared road space scene of pedestrian-traditional vehicle-autonomous vehicle

    图 7  人-车-智交互运动结果

    Figure 7.  Interaction result of pedestrian-traditional vehicle-autonomous vehicle

    图 8  社会力模型模拟结果

    Figure 8.  Simulation result of social force model

    表  1  影响因子在不同情况下的取值范围

    Table  1.   Range of impact factor in different situations

    ${D_1}$取值范围 汽车外部标志 汽车驾驶模式
    ${D_1} \leqslant 0$ 外部有显示决策行为的
    实时标志
    有驾驶员且驾驶员与
    行人有眼神交流
    ${D_1} > 0$ 外部无显示决策行为的
    实时标志
    无驾驶员或有驾驶员
    但注意力不在周围路况
    ${D_2}$取值范围 行人信任程度 行人心理特征
    ${D_2} \leqslant 0$ 对自动驾驶汽车了解少,
    持怀疑态度
    保守型性格
    ${D_2} > 0$ 对自动驾驶汽车了解多,
    相信避撞技术
    冲动型性格
    ${D_3}$取值范围 行人犹豫时间
    ${D_3} \leqslant 0$ 行动能力强,犹豫时间短,能及时改变行为
    ${D_3} > 0$ 行动能力弱,犹豫时间长,不能及时改变行为
    下载: 导出CSV

    表  2  不同影响系数模拟生成的不同距离

    Table  2.   Different distances simulated under different impact factors

    ${D_{\eta}}$取值距离平均值/m距离最小值/m
    0.511.28171.2729
    111.29561.3355
    211.34471.3618
    下载: 导出CSV

    表  3  不同模型模拟生成的不同距离

    Table  3.   Different distances simulated under different models

    模型类型距离平均值/m距离最小值/m
    动量模型11.29561.3355
    社会力模型12.00491.2291
    下载: 导出CSV
  • [1] CHENG H, JOHORA F T, SESTER M, et al. Trajectory modelling in shared spaces: expert-based vs. deep learning approach? [M]// Multi-Agent-Based Simulation XXI. Berlin: Springer, 2021: 13-27.
    [2] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 961-971.
    [3] CHENG H, SESTER M. Modeling mixed traffic in shared space using LSTM with probability density mapping[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE Press, 2018: 3898-3904.
    [4] PANG S M, CAO J X, JIAN M Y, et al. BR-GAN: a pedestrian trajectory prediction model combined with behavior recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24609-24620. doi: 10.1109/TITS.2022.3193442
    [5] HUANG L, ZHUANG J H, CHENG X M, et al. STI-GAN: multimodal pedestrian trajectory prediction using spatiotemporal interactions and a generative adversarial network[J]. IEEE Access, 2021, 9: 50846-50856. doi: 10.1109/ACCESS.2021.3069134
    [6] FELICIANI C, CROCIANI L, GORRINI A, et al. A simulation model for non-signalized pedestrian crosswalks based on evidence from on field observation[J]. Intelligenza Artificiale: the International Journal of the AIxIA, 2017, 11(2): 117-138. doi: 10.3233/IA-170110
    [7] WU W J, CHEN R C, JIA H F, et al. Game theory modeling for vehicle-pedestrian interactions and simulation based on cellular automata[J]. International Journal of Modern Physics C, 2019, 30(4): 1950025. doi: 10.1142/S0129183119500256
    [8] MA Y X, MANOCHA D, WANG W P. AutoRVO: local navigation with dynamic constraints in dense heterogeneous traffic[EB/OL]. (2018-11-14)[2023-06-15]. https://arxiv.org/abs/1804.02915v2.
    [9] CHARLTON J, GONZALEZ L R M, MADDOCK S, et al. Simulating crowds and autonomous vehicles[M]// Transactions on Computational Science XXXVII. Berlin: Springer, 2020: 129-143.
    [10] ANVARI B, BELL M G H, SIVAKUMAR A, et al. Modelling shared space users via rule-based social force model[J]. Transportation Research Part C: Emerging Technologies, 2015, 51: 83-103. doi: 10.1016/j.trc.2014.10.012
    [11] CHAO Q W, DENG Z G, JIN X G. Vehicle–pedestrian interaction for mixed traffic simulation[J]. Computer Animation and Virtual Worlds, 2015, 26(3-4): 405-412. doi: 10.1002/cav.1654
    [12] RINKE N, SCHIERMEYER C, PASCUCCI F, et al. A multi-layer social force approach to model interactions in shared spaces using collision prediction[J]. Transportation Research Procedia, 2017, 25: 1249-1267. doi: 10.1016/j.trpro.2017.05.144
    [13] JOHORA F T, MÜLLER J P. Modeling interactions of multimodal road users in shared spaces[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE Press, 2018: 3568-3574.
    [14] SCHÖNAUER R, STUBENSCHROTT M, SCHROM-FEIERTAG H, et al. Social and spatial behaviour in shared spaces[C]//Proceedings of the 17th International Conference on Urban Planning and Regional Development in the Information Society GeoMultimedia. Piscataway: IEEE Press, 2012: 759-767.
    [15] HELBING D, MOLNÁR P. Social force model for pedestrian dynamics[J]. Physical Review E, 1995, 51(5): 4282-4286. doi: 10.1103/PhysRevE.51.4282
    [16] YANG D F, LI L H, REDMILL K, et al. Top-view trajectories: a pedestrian dataset of vehicle-crowd interaction from controlled experiments and crowded campus[C]//Proceedings of the IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2019: 899-904.
    [17] YANG D F, ÖZGÜNER Ü, REDMILL K. A social force based pedestrian motion model considering multi-pedestrian interaction with a vehicle[J]. ACM Transactions on Spatial Algorithms and Systems, 2020, 6(2): 1-27.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  57
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 录用日期:  2023-08-04
  • 网络出版日期:  2023-09-05
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答