留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑模控制律的机翼极限环主动抑制

王诗其 张征 宋晨 杨超 郑焱午

王诗其,张征,宋晨,等. 基于滑模控制律的机翼极限环主动抑制[J]. 北京航空航天大学学报,2025,51(6):2033-2040 doi: 10.13700/j.bh.1001-5965.2023.0376
引用本文: 王诗其,张征,宋晨,等. 基于滑模控制律的机翼极限环主动抑制[J]. 北京航空航天大学学报,2025,51(6):2033-2040 doi: 10.13700/j.bh.1001-5965.2023.0376
WANG S Q,ZHANG Z,SONG C,et al. Limit cycle oscillation suppression of an airfoil based on sliding mode control law[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2033-2040 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0376
Citation: WANG S Q,ZHANG Z,SONG C,et al. Limit cycle oscillation suppression of an airfoil based on sliding mode control law[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2033-2040 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0376

基于滑模控制律的机翼极限环主动抑制

doi: 10.13700/j.bh.1001-5965.2023.0376
基金项目: 

国家自然科学基金(11402013)

详细信息
    通讯作者:

    E-mail:songchen@buaa.edu.cn

  • 中图分类号: V215.3

Limit cycle oscillation suppression of an airfoil based on sliding mode control law

Funds: 

National Natural Science Foundation of China (11402013)

More Information
  • 摘要:

    间隙非线性机翼系统在一定速度范围内会发生极限环振荡,传统线性控制律对极限环抑制效果通常不显著且鲁棒性不足,因此,需设计相应的非线性控制律来提高系统的控制效果及鲁棒性。通过对间隙非线性二元翼段气动弹性系统进行线性二次调节(LQR)控制律设计,结果显示:极限环速度范围由11.4~16.9 m/s优化至12.9~19.2 m/s。同时,对间隙非线性二元翼段气动弹性系统进行滑模控制律(SMC)设计,结果显示:极限环速度范围由11.4~16.9 m/s优化至29.4~39.3 m/s。算例结果表明:针对间隙非线性系统,所设计SMC效果优于LQR控制律。

     

  • 图 1  二元翼段[13]

    Figure 1.  Two-dimensional airfoil[13]

    图 2  位移-力关系曲线[11]

    Figure 2.  Displacement-force curve[11]

    图 3  闭环系统框图(LQR)

    Figure 3.  Block diagram of closed loop system (LQR)

    图 4  闭环系统框图(SMC)

    Figure 4.  Block diagram of closed loop system (SMC)

    图 5  线性系统开环响应(速度为16.9 m/s)

    Figure 5.  Open-loop response of linear system (the speed is 16.9 m/s)

    图 6  非线性系统开环响应(速度为16 m/s)

    Figure 6.  Open-loop response of nonlinear system (the speed is 16 m/s)

    图 7  线性系统闭环响应(LQR, 速度为16.9 m/s)

    Figure 7.  Closed-loop response of linear system (LQR, the speed is 16.9 m/s)

    图 8  线性系统闭环响应(LQR, 速度为24.9 m/s)

    Figure 8.  Closed-loop response of linear system (LQR, the speed is 24.9 m/s)

    图 9  非线性系统闭环响应(LQR, 速度为16 m/s)

    Figure 9.  Closed-loop response of nonlinear system (LQR, the speed is 16 m/s)

    图 10  非线性系统闭环响应(LQR, 速度为24.9 m/s)

    Figure 10.  Closed-loop response of nonlinear system (LQR, the speed is 24.9 m/s)

    图 11  线性系统闭环响应(SMC, 速度为24.9 m/s)

    Figure 11.  Closed-loop response of linear system (SMC, the speed is 24.9 m/s)

    图 12  线性系统闭环响应(SMC, 速度为39.3 m/s)

    Figure 12.  Closed-loop response of linear system (SMC, the speed is 39.3 m/s)

    图 13  非线性系统闭环响应(SMC, 速度为24.9 m/s)

    Figure 13.  Closed-loop response of nonlinear system (SMC, the speed is 24.9 m/s)

    图 14  非线性系统闭环响应(SMC, 速度为29.4 m/s)

    Figure 14.  Closed-loop response of nonlinear system (SMC, the speed is 29.4 m/s)

    表  1  二元翼段参数[14]

    Table  1.   Parameters of two-dimensional airfoil[14]

    参数 数值 参数 数值
    a −0.68 b/m 0.135
    m/kg 12.387 Iα 0.065
    xα 0.3267 ch/(N·s·m−1) 27.43
    cα/(N·s) 0.036 c 3.358
    c −0.635 ρ/(kg·m−3) 1.225
    kh/(N·m−1) 2884.4 k 28
    下载: 导出CSV
  • [1] 赵永辉, 胡海岩. 具有操纵面间隙非线性二维翼段的气动弹性分析[J]. 航空学报, 2003, 24(6): 521-525.

    ZHAO Y H, HU H Y. Aeroelastic analysis of a two-dimensional airfoil with control surface freeplay nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6): 521-525(in Chinese).
    [2] DOWELL E H, COX D, CURTISS H C, et al. A modern course in aeroelasticity[M]. Dordrecht: Kluwer Academic Pub lisher, 2004.
    [3] 胡海岩, 赵永辉, 黄锐. 飞机结构气动弹性分析与控制研究[J]. 力学学报, 2016, 48(1): 1-27.

    HU H Y, ZHAO Y H, HUANG R. Studies on aeroelastic analysis and control of aircraft structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 1-27(in Chinese).
    [4] 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466.

    HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3): 428-466(in Chinese).
    [5] 李家旭, 田玮, 谷迎松. 考虑间隙非线性的控制舵非线性气动弹性分析[J]. 航空工程进展, 2020, 11(6): 827-835.

    LI J X, TIAN W, GU Y S. Nonlinear aero-elastic analysis of control fin with free-play nonlinearity[J]. Advances in Aeronautical Science and Engineering, 2020, 11(6): 827-835(in Chinese).
    [6] 李家旭, 田玮, 谷迎松. 间隙非线性气动弹性系统颤振及控制问题研究进展[J]. 强度与环境, 2021, 48(4): 18-25.

    LI J X, TIAN W, GU Y S. Advance in the study on nonlinear flutter and control of aeroelastic system with freeplay nonlinearity[J]. Structure & Environment Engineering, 2021, 48(4): 18-25(in Chinese).
    [7] PENDLETON E W, BESSETTE D, FIELD P B, et al. Active aeroelastic wing flight research program: technical program and model analytical development[J]. Journal of Aircraft, 2000, 37(4): 554-561.
    [8] 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础[M]. 北京: 北京航空航天大学出版社, 2004.

    CHEN G B, ZOU C Q, YANG C. Aeroelastic design foundation[M]. Beijing: Beihang University Press, 2004(in Chinese).
    [9] 宋晨, 吴志刚, 杨超. 基于PID控制器的颤振主动抑制控制律设计[C]//第十一届全国空气弹性学术交流会会议. 北京: 北京航空航天大学飞机所气动弹性研究室, 2009: 230-235.

    SONG C, WU Z G, YANG C. Design active flutter suppression control law based on PID controller[C]//Proceedings of the 11th National Airelastic Symposimn. Beijing: BUAA Aeroelatictty Lab, 2009: 230-235(in Chinese).
    [10] 杨超, 宋晨, 吴志刚, 等. 多控制面飞机的全机颤振主动抑制设计[J]. 航空学报, 2010, 31(8): 1501-1508.

    YANG C, SONG C, WU Z G, et al. Active flutter suppression of airplane configuration with multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1501-1508(in Chinese).
    [11] 李道春, 向锦武. 间隙非线性气动弹性颤振控制[J]. 北京航空航天大学学报, 2007, 33(6): 640-643.

    LI D C, XIANG J W. Flutter control of aeroelasticity with freeplay nonlinearity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6): 640-643(in Chinese).
    [12] 李道春, 向锦武. 控制面间隙对非线性二元机翼气动弹性响应的影响[J]. 航空学报, 2009, 30(8): 1385-1391.

    LI D C, XIANG J W. Effect of control surface freeplay on nonlinear aeroelastic responses of an airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1385-1391(in Chinese).
    [13] 宋晨, 吴志刚, 杨超. 二元机翼滑模变结构控制颤振主动抑制[J]. 北京航空航天大学学报, 2010, 36(12): 1400-1403.

    SONG C, WU Z G, YANG C. Sliding mode variable structure control of flutter suppression for two-dimensional wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(12): 1400-1403(in Chinese).
    [14] 杨超, 宋晨, 吴志刚, 等. 滑模输出反馈控制在二元机翼颤振主动抑制中的应用[J]. 中国科学: 技术科学, 2010, 40(7): 745-756. doi: 10.1360/ze2010-40-7-745

    YANG C, SONG C, WU Z G, et al. Application of sliding mode output feedback control in active flutter suppression of two-dimensional wing[J]. Scientia Sinica (Technologica), 2010, 40(7): 745-756(in Chinese). doi: 10.1360/ze2010-40-7-745
    [15] 宋晨, 王诗其, 杨超. 基于滑模观测器的机翼颤振主动抑制设计[J]. 北京航空航天大学学报, 2017, 43(6): 1098-1104.

    SONG C, WANG S Q, YANG C. Active flutter suppression design of a wing based on sliding mode observer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1098-1104(in Chinese).
    [16] SINGH S N, YIM W. State feedback control of an aeroelastic system with structural nonlinearity[J]. Aerospace Science and Technology, 2003, 7(1): 23-31. doi: 10.1016/S1270-9638(02)00004-4
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  2
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 录用日期:  2023-10-30
  • 网络出版日期:  2023-11-17
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答