Limit cycle oscillation suppression of an airfoil based on sliding mode control law
-
摘要:
间隙非线性机翼系统在一定速度范围内会发生极限环振荡,传统线性控制律对极限环抑制效果通常不显著且鲁棒性不足,因此,需设计相应的非线性控制律来提高系统的控制效果及鲁棒性。通过对间隙非线性二元翼段气动弹性系统进行线性二次调节(LQR)控制律设计,结果显示:极限环速度范围由11.4~16.9 m/s优化至12.9~19.2 m/s。同时,对间隙非线性二元翼段气动弹性系统进行滑模控制律(SMC)设计,结果显示:极限环速度范围由11.4~16.9 m/s优化至29.4~39.3 m/s。算例结果表明:针对间隙非线性系统,所设计SMC效果优于LQR控制律。
Abstract:Limit cycle oscillation happens in airfoil systems with freeplay nonlinearity within a specific velocity range. Because the traditional linear control law’s limit cycle suppression effect is typically insignificant and its robustness is insufficient, a corresponding nonlinear control law must be designed in order to improve the system’s control effect and robustness. According to this article, the limit cycle speed range is optimized between 11.4−16.9 m/s and 12.9−19.2 m/s. The linear quadratic regulartor (LQR) control law is created for the 2D airfoil aeroelastic system with freeplay nonlinearity. At the same time, the sliding mode control law (SMC) is designed for the 2D airfoil aeroelastic system with freeplay nonlinearity above, it shows that the speed range of the limit cycle is optimized from 11.4−16.9 m/s to 29.4−39.3 m/s. The result of the calculating example shows that the SMC law is better than that of LQR for nonlinear systems in this paper.
-
-
[1] 赵永辉, 胡海岩. 具有操纵面间隙非线性二维翼段的气动弹性分析[J]. 航空学报, 2003, 24(6): 521-525.ZHAO Y H, HU H Y. Aeroelastic analysis of a two-dimensional airfoil with control surface freeplay nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6): 521-525(in Chinese). [2] DOWELL E H, COX D, CURTISS H C, et al. A modern course in aeroelasticity[M]. Dordrecht: Kluwer Academic Pub lisher, 2004. [3] 胡海岩, 赵永辉, 黄锐. 飞机结构气动弹性分析与控制研究[J]. 力学学报, 2016, 48(1): 1-27.HU H Y, ZHAO Y H, HUANG R. Studies on aeroelastic analysis and control of aircraft structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 1-27(in Chinese). [4] 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466.HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3): 428-466(in Chinese). [5] 李家旭, 田玮, 谷迎松. 考虑间隙非线性的控制舵非线性气动弹性分析[J]. 航空工程进展, 2020, 11(6): 827-835.LI J X, TIAN W, GU Y S. Nonlinear aero-elastic analysis of control fin with free-play nonlinearity[J]. Advances in Aeronautical Science and Engineering, 2020, 11(6): 827-835(in Chinese). [6] 李家旭, 田玮, 谷迎松. 间隙非线性气动弹性系统颤振及控制问题研究进展[J]. 强度与环境, 2021, 48(4): 18-25.LI J X, TIAN W, GU Y S. Advance in the study on nonlinear flutter and control of aeroelastic system with freeplay nonlinearity[J]. Structure & Environment Engineering, 2021, 48(4): 18-25(in Chinese). [7] PENDLETON E W, BESSETTE D, FIELD P B, et al. Active aeroelastic wing flight research program: technical program and model analytical development[J]. Journal of Aircraft, 2000, 37(4): 554-561. [8] 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础[M]. 北京: 北京航空航天大学出版社, 2004.CHEN G B, ZOU C Q, YANG C. Aeroelastic design foundation[M]. Beijing: Beihang University Press, 2004(in Chinese). [9] 宋晨, 吴志刚, 杨超. 基于PID控制器的颤振主动抑制控制律设计[C]//第十一届全国空气弹性学术交流会会议. 北京: 北京航空航天大学飞机所气动弹性研究室, 2009: 230-235.SONG C, WU Z G, YANG C. Design active flutter suppression control law based on PID controller[C]//Proceedings of the 11th National Airelastic Symposimn. Beijing: BUAA Aeroelatictty Lab, 2009: 230-235(in Chinese). [10] 杨超, 宋晨, 吴志刚, 等. 多控制面飞机的全机颤振主动抑制设计[J]. 航空学报, 2010, 31(8): 1501-1508.YANG C, SONG C, WU Z G, et al. Active flutter suppression of airplane configuration with multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1501-1508(in Chinese). [11] 李道春, 向锦武. 间隙非线性气动弹性颤振控制[J]. 北京航空航天大学学报, 2007, 33(6): 640-643.LI D C, XIANG J W. Flutter control of aeroelasticity with freeplay nonlinearity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6): 640-643(in Chinese). [12] 李道春, 向锦武. 控制面间隙对非线性二元机翼气动弹性响应的影响[J]. 航空学报, 2009, 30(8): 1385-1391.LI D C, XIANG J W. Effect of control surface freeplay on nonlinear aeroelastic responses of an airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1385-1391(in Chinese). [13] 宋晨, 吴志刚, 杨超. 二元机翼滑模变结构控制颤振主动抑制[J]. 北京航空航天大学学报, 2010, 36(12): 1400-1403.SONG C, WU Z G, YANG C. Sliding mode variable structure control of flutter suppression for two-dimensional wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(12): 1400-1403(in Chinese). [14] 杨超, 宋晨, 吴志刚, 等. 滑模输出反馈控制在二元机翼颤振主动抑制中的应用[J]. 中国科学: 技术科学, 2010, 40(7): 745-756. doi: 10.1360/ze2010-40-7-745YANG C, SONG C, WU Z G, et al. Application of sliding mode output feedback control in active flutter suppression of two-dimensional wing[J]. Scientia Sinica (Technologica), 2010, 40(7): 745-756(in Chinese). doi: 10.1360/ze2010-40-7-745 [15] 宋晨, 王诗其, 杨超. 基于滑模观测器的机翼颤振主动抑制设计[J]. 北京航空航天大学学报, 2017, 43(6): 1098-1104.SONG C, WANG S Q, YANG C. Active flutter suppression design of a wing based on sliding mode observer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1098-1104(in Chinese). [16] SINGH S N, YIM W. State feedback control of an aeroelastic system with structural nonlinearity[J]. Aerospace Science and Technology, 2003, 7(1): 23-31. doi: 10.1016/S1270-9638(02)00004-4 -