-
摘要:
主翼面与可动翼面之间的缝隙会对飞机飞行性能造成一定影响,缝隙封严结构的应用会改善机翼的表面光滑性,同时达到增升减阻、优化操纵等效果。基于此,对5种封严结构设计形式进行对比,并将封严结构的设计分为依靠机构和依靠材料2类,分析了其优缺点。比较了4家航空配件公司的封严结构产品,分析了耐磨自由端细节设计。给出了快速拆装修理、限制结构刚度范围、设计时仿真与试验相结合等设计建议。
Abstract:The gap between the main wing surface and the movable wing surface might have a certain impact on the flight performance of the aircraft. The application of the gap-sealing structure will improve the surface smoothness of the wing while achieving effects such as increasing lift, reducing drag, and optimizing operation. This article compares various sealing structure design forms and divides them into two categories: relying on materials and relying on mechanisms. The benefits and drawbacks of each category are examined.The sealing structure products of several aviation parts companies are compared. Analysis is done on intricate designs like wear-resistant free ends. Design suggestions are provided at last, such as rapid disassembly and repair, limitation for the range of the structural stiffness, and a combination of simulation and experiment while designing.
-
表 1 4家公司封严结构产品信息对比
Table 1. Comparison of product information for four companies with strict sealing structures
公司名称 适用机型 性能提升 选材和安装 产品价格/美元 Lasar Aero Styling & Repair Mooney M20系列 巡航速度增加2~4 km/h,爬升
速度显著增加,操纵性能改善铝制板材,抽芯铆钉安装,襟翼部位安装需12 h,副翼部位为4 h 180~325 Whelen Comanche PA-24, PA-28,
PA-32, PA-34, PA-39,
PA-44系列巡航速度提升4~5 km/h ,着陆速度更低 高性能环氧树脂层合板,3~4 h安装时间 999~ 1799 Knots 2U Piper、Beech、Cessna
等系列将Piper Twin Comanche型号的巡航速度提升32 km/h,其余型
号提升6~8 km/h铝制板材、超高分子量塑料防摩擦条,用螺钉安装于可动翼面内部,安装时间4 h 250~900 Horton Cessna 182 Skylane 巡航速度提升3 km/h,着陆时的滚转速率和低速状态下的操纵性能明显改善 铝制板材或玻璃纤维层合板,带有硅树脂黏合剂,使用空心铆钉固定,安装时间为8~12 h 350 -
[1] 李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5): 1-10.LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5): 1-10 (in Chinese). [2] 金伟, 杨智春, 孟德虹, 等. 先进战斗机全动V尾抖振动强度设计与验证[J]. 航空学报, 2020, 41(6): 523473.JIN W, YANG Z C, MENG D H, et al. Strength desigh and test of advanced fighter all-moving twin V-tail buffet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523473(in Chinese). [3] 聂春生, 阎君, 曹占伟, 等. 头部外形对升力体转捩影响的试验研究[J]. 导弹与航天运载技术, 2022(4): 104-108.NIE C S, YAN J, CAO Z W, et al. Study on the influence of head shape on transition of lifting body[J]. Missiles and Space Vehicles, 2022(4): 104-108(in Chinese). [4] HERNANDEZ J, FOULIARD Q P, VO K, et al. Characterization of corrosive defects through pulsed eddy current thermography for aircraft panels: AIAA 2021-0433[R]. Reston: AIAA, 2021. [5] 桑建华, 张宗斌, 王烁. 低RCS飞行器表面弱散射源研究[J]. 航空工程进展, 2012, 3(3): 257-262. doi: 10.3969/j.issn.1674-8190.2012.03.002SANG J H, ZHANG Z B, WANG S. Research on the radar cross section of weak scatterers on stealth vehicle[J]. Advances in Aeronautical Science and Engineering, 2012, 3(3): 257-262(in Chinese). doi: 10.3969/j.issn.1674-8190.2012.03.002 [6] 王立研, 王菁华, 杨炳尉. 高超声速飞行器控制面动密封技术[J]. 宇航材料工艺, 2016, 46(3): 1-6. doi: 10.3969/j.issn.1007-2330.2016.03.001WANG L Y, WANG J H, YANG B W. Dynamic seal technology for control surface of hypersonic vehicles[J]. Aerospace Materials & Technology, 2016, 46(3): 1-6(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.03.001 [7] DECKER G R, ROBEDEAU S A. Slotted flaperon seal mechanism for aircraft devices: US11046421[P]. 2021-06-29. [8] 潘立新, 孔斌, 何娅梅, 等. 一种飞行器舵面前缘随动封严结构: CN204433037U[P]. 2015-07-01.PAN L X, KONG B, HE Y M, et al. A kind of follow-up sealing structure for the leading edge of aircraft rudder surface: CN204433037U[P]. 2015-07-01(in Chinese). [9] 胡利, 禹建军, 刘衍腾, 等. 一种前缘襟翼缝隙封严机构: CN108609160A[P]. 2021-05-07.HU L, YU J J, LIU Y T, et al. A kind of gap sealing mechanism for the leading edge of flap: CN108609160A[P]. 2021-05-07(in Chinese). [10] WILDMAN E. Flight surface seal: US8292236[P]. 2012-10-23. [11] JOHNSON B D. Fairing arrangements for aircraft: US7051982[P]. 2006-05-30. [12] 王东, 胡珺, 陈世春, 等. 一种飞机操纵面封严结构: CN207725605U[P]. 2018-08-14.WANG D, HU J, CHEN S C, et al. Airplane control face structure of obturaging: CN207725605U[P]. 2018-08-14(in Chinese). [13] 成骏, 阚小如, 陶义建. 基于Dynaform的飞机封严板压窝成形工艺分析与优化设计[J]. 锻压技术, 2021, 46(1): 37-42.CHENG J, KAN X R, TAO Y J. Analysis and optimal design on press dimple forming process for aircraft seal plate based on Dynaform[J]. Forging & Stamping Technology, 2021, 46(1): 37-42(in Chinese). [14] BLADES P. Seal for aircraft wing: US10480653[P]. 2019-11-19. [15] 许腾飞, 王新峰, 郭树祥. 高弹性橡胶夹层结构封严板分析方法[J]. 南京航空航天大学学报, 2020, 52(3): 394-400.XU T F, WANG X F, GUO S X. Analytical method of sealed plate with hyperelastic rubber sandwich structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(3): 394-400(in Chinese). [16] 徐丽, 陈跃良, 武书阁, 等. 舰载机舰面停放环境及腐蚀情况研究[J]. 飞机设计, 2016, 36(6): 54-57.XU L, CHEN Y L, WU S G, et al. The study about the deck park environment of carrier-based aircraft and corrosive state[J]. Aircraft Design, 2016, 36(6): 54-57(in Chinese). [17] 徐海宇. PLA/竹纤维复合材料的制备及其性能研究[D]. 杭州: 浙江农林大学, 2021.XU H Y. Preparation and properties of PLA/bamboo fiber composites[D]. Hangzhou: Zhejiang A & F University, 2021(in Chinese). [18] 梁珊, 李杨, 吴建军, 等. 竹纤维/玻璃纤维混杂增强聚丙烯复合材料[J]. 塑料, 2012, 41(5): 86-88.LIANG S, LI Y, WU J J, et al. Properties of bamboo fiber/glass fiber/hybrid reinforced polypropylene composite material[J]. Plastics, 2012, 41(5): 86-88(in Chinese). [19] STEINETZ B M. Seal technology for hypersonic vehicle and propulsion: an overview[C]//Proceedings of the Short Course on Hypersonics Structures and Materials. Hampton: NTRS, 2008. [20] BLADES P. Seal plate for an aerodynamic surface: US11299254[P]. 2022-04-12. [21] NEAL M A, SMITH C R. Dynamic conformal aerodynamic seal (CAS) for aircraft control surfaces: US10017239[P]. 2018-07-10. [22] POLL D I A. Transition in the infinite swept attachment line boundary layer[J]. Aeronautical Quarterly, 1979, 30(4): 607-629. doi: 10.1017/S0001925900008763 [23] HAFTMANN B, DEBBELER F J, GIELEN H. Takeoff drag prediction for airbus A300-600 and A310 compared with flight test results[J]. Journal of Aircraft, 1988, 25(12): 1088-1096. doi: 10.2514/3.45707 [24] SPAID F W. High Reynolds number, multielement airfoil flowfieldmeasurements[J]. Journal of Aircraft, 2000, 37(3): 499-507. doi: 10.2514/2.2626 [25] 赖欢, 祝长江, 陈万华, 等. 大型低温风洞结构设计关键技术分析[J]. 实验流体力学, 2022, 36(1): 19-26. doi: 10.11729/syltlx20210040LAI H, ZHU C J, CHEN W H, et al. Key technology for mechanical design in large-scale cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 19-26(in Chinese). doi: 10.11729/syltlx20210040 -