留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进卡尔曼滤波的星内校时守时方法

黄跃 王慧泉 涂实磊 金仲和

黄跃,王慧泉,涂实磊,等. 基于改进卡尔曼滤波的星内校时守时方法[J]. 北京航空航天大学学报,2025,51(6):2157-2164 doi: 10.13700/j.bh.1001-5965.2023.0400
引用本文: 黄跃,王慧泉,涂实磊,等. 基于改进卡尔曼滤波的星内校时守时方法[J]. 北京航空航天大学学报,2025,51(6):2157-2164 doi: 10.13700/j.bh.1001-5965.2023.0400
HUANG Y,WANG H Q,TU S L,et al. On-board timekeeping method based on improved Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2157-2164 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0400
Citation: HUANG Y,WANG H Q,TU S L,et al. On-board timekeeping method based on improved Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2157-2164 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0400

基于改进卡尔曼滤波的星内校时守时方法

doi: 10.13700/j.bh.1001-5965.2023.0400
详细信息
    通讯作者:

    E-mail:hqwang@zju.edu.cn

  • 中图分类号: V11

On-board timekeeping method based on improved Kalman filter

More Information
  • 摘要:

    为解决微纳卫星星上校时守时系统的稳定性差、受环境温度影响大的问题,提出了提高系统性能的新息加权自适应卡尔曼滤波算法。建立温补晶振的频率随温度变化的模型,采用卡尔曼滤波算法滤除输入噪声并实现晶振的校准,采用新息加权技术滤除野值,利用自适应技术减少系统噪声对滤波结果的影响。实验结果表明:所提算法可以在600 s左右实现收敛并且在校时期间可以实时调整,校时过程中可有效地减小输入野值和系统噪声的影响,在环境温度变化时守时精度可达到178 μs/d,有效地提高了系统的稳定性和守时精度。

     

  • 图 1  系统架构图

    Figure 1.  System architecture diagram

    图 2  参数收敛图

    Figure 2.  Parameter convergence graph

    图 3  时钟频率变化图

    Figure 3.  Clock frequency change graph

    图 4  1 PPS信号频率变化图

    Figure 4.  1 PPS signal frequency change graph

    图 5  晶振频率变化图

    Figure 5.  Crystal oscillator frequency change graph

    图 6  平均滤波算法滤波效果图

    Figure 6.  Average filter algorithm filtering effect diagram

    图 7  卡尔曼滤波算法滤波效果图

    Figure 7.  Kalman filter algorithm filtering effect diagram

    图 8  新息加权自适应卡尔曼滤波算法滤波效果图

    Figure 8.  The filtering effect of the Innovation-weighted adaptive Kalman filter algorithm

    图 9  温循晶振温度采样图

    Figure 9.  Crystal oscillator temperature change plot during temperature cycling

    图 10  不含自适应因子频率估计曲线

    Figure 10.  Frequency estimation curve without adaptive factor

    图 11  含自适应因子频率估计曲线

    Figure 11.  Frequency estimation curve with adaptive factor

    图 12  关闭GNSS后时间偏移曲线

    Figure 12.  Time offset curve after turning off GNSS

    表  1  有无晶振模型时间偏移表

    Table  1.   Time offset table with or without crystal oscillator model

    时长/h 无晶振模型偏移/ms 有晶振模型偏移/μs
    0.5 0.174 2 5.616 7
    1 0.473 2 6.366 7
    3 3.205 4 33.466 7
    6 12.835 5 82.133 3
    24 107.301 7 178.300 0
    下载: 导出CSV
  • [1] ZHAO X Y, ZHAO C J, LI J L, et al. Research on design, simulation, and experiment of separation mechanism for micro-nano satellites[J]. Applied Sciences, 2022, 12(12): 5997. doi: 10.3390/app12125997
    [2] XU J L, ZHANG C J, WANG C H, et al. Approach to inter-satellite time synchronization for micro-satellite cluster[J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 805-815. doi: 10.21629/JSEE.2018.04.15
    [3] YAO J, YOON S, STRESSLER B, et al. GPS satellite clock estimation using global atomic clock network[J]. GPS Solutions, 2021, 25(3): 106. doi: 10.1007/s10291-021-01145-8
    [4] BIANCALANA F, SKRYABIN D V, YULIN A V. Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(1 Pt 2): 016615.
    [5] GIRALO V, D’AMICO S. Distributed multi-GNSS timing and localization for nanosatellites[J]. Navigation, 2019, 66(4): 729-746. doi: 10.1002/navi.337
    [6] 苏星, 王慧泉, 金仲和. 基于GPS校准的皮卫星高精度时间系统方案[J]. 传感技术学报, 2016, 29(8): 1200-1204. doi: 10.3969/j.issn.1004-1699.2016.08.013

    SU X, WANG H Q, JIN Z H. The high-precisiontime system design of pico-satellite based on GPS receiver[J]. Chinese Journal of Sensors and Actuators, 2016, 29(8): 1200-1204 (in Chinese). doi: 10.3969/j.issn.1004-1699.2016.08.013
    [7] GIORGI G, NARDUZZI C. Performance analysis of Kalman-filter-based clock synchronization in IEEE 1588 networks[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(8): 2902-2909. doi: 10.1109/TIM.2011.2113120
    [8] PALLIER D, LE CAM V, PILLEMENT S. Energy-efficient GPS synchronization for wireless nodes[J]. IEEE Sensors Journal, 2021, 21(4): 5221-5229. doi: 10.1109/JSEN.2020.3031350
    [9] 李振海, 唐金锐, 熊斌宇, 等. 基于新息加权自适应UPF算法的智能变电站PTP主时钟源校准新方法[J]. 电网技术, 2022, 46(5): 1662-1671.

    LI Z H, TANG J R, XIONG B Y, et al. A novel calibration method for the master PTP clock in smart substations using new information sequence weighting and adaptive unscented Kalman particle filter algorithms[J]. Power System Technology, 2022, 46(5): 1662-1671 (in Chinese).
    [10] KOSYKH A V, IONOV B P. Dynamic temperature model and dynamic temperature compensation of crystal oscillators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 41(3): 370-374.
    [11] LIU Z, CHENG Y H, WANG P, et al. A method for remaining useful life prediction of crystal oscillators using the Bayesian approach and extreme learning machine under uncertainty[J]. Neurocomputing, 2018, 305: 27-38. doi: 10.1016/j.neucom.2018.04.043
    [12] TAN F, LIAO S, XU L, et al. New method for 100-MHz high-frequency temperature-compensated crystal oscillator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(12): 2745-2749. doi: 10.1109/TUFFC.2020.3013664
    [13] ANDREJEVIC M V, LITOVSKI V. Electronic circuits modeling using artificial neural networks[J]. Journal of Automatic Control, 2003, 13(1): 31-37. doi: 10.2298/JAC0301031A
    [14] VIG J R. Quartz crystal resonators and oscillators for frequency control and timing applications. A tutorial [J]. Nasa Sti/recon Technical Report N, 1994, 95: 19519.
    [15] MOHAMED A H, SCHWARZ K P. Adaptive Kalman filtering for INS/GPS[J]. Journal of Geodesy, 1999, 73(4): 193-203.
    [16] BEN SASSI H, FATIMA E, ES-SBAI N. State of charge estimation by multi-innovation unscented Kalman filter for vehicular applications[J]. Journal of Energy Storage, 2020, 32: 101978. doi: 10.1016/j.est.2020.101978
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 录用日期:  2023-09-22
  • 网络出版日期:  2023-10-26
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答