留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双重随机扰动的人工大猩猩部队优化算法及工程应用

杜晓昕 郝田茹 王波 王振飞 张剑飞 金梅

杜晓昕,郝田茹,王波,等. 基于双重随机扰动的人工大猩猩部队优化算法及工程应用[J]. 北京航空航天大学学报,2025,51(6):1882-1896 doi: 10.13700/j.bh.1001-5965.2023.0404
引用本文: 杜晓昕,郝田茹,王波,等. 基于双重随机扰动的人工大猩猩部队优化算法及工程应用[J]. 北京航空航天大学学报,2025,51(6):1882-1896 doi: 10.13700/j.bh.1001-5965.2023.0404
DU X X,HAO T R,WANG B,et al. Artificial gorilla troops optimizer based on double random disturbance and its application of engineering problem[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1882-1896 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0404
Citation: DU X X,HAO T R,WANG B,et al. Artificial gorilla troops optimizer based on double random disturbance and its application of engineering problem[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1882-1896 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0404

基于双重随机扰动的人工大猩猩部队优化算法及工程应用

doi: 10.13700/j.bh.1001-5965.2023.0404
基金项目: 

黑龙江省省属高等学校基本科研业务费自然科学类青年创新人才项目(145209206)

详细信息
    通讯作者:

    E-mail:xiaoxindu@qqhru.edu.cn

  • 中图分类号: TP301.6

Artificial gorilla troops optimizer based on double random disturbance and its application of engineering problem

Funds: 

Heilongjiang Provincial Higher Education Institutions Basic Scientific Research Business Funds Natural Science Young Innovative Talents Program (145209206)

More Information
  • 摘要:

    针对人工大猩猩部队优化算法(GTO)存在易陷入局部最优、收敛速度慢、寻优精度低等问题,提出了基于双重随机扰动策略的人工大猩猩部队优化算法(DGTO)。引入Halton序列初始化种群,增加种群的多样性;在算法寻优阶段使用多维随机数策略,并在探索阶段提出自适应位置搜索机制,提高算法的收敛速度;提出双重随机扰动策略,解决大猩猩的群居效应,增强算法跳出局部最优的能力;采用逐维更新策略更新个体位置,提升算法的收敛精度。通过10个基准测试函数寻优结果及Wilcoxon秩和检验对比可知,改进算法在寻优精度、收敛速度上有较大提升。同时,通过工程优化问题的实验对比分析,进一步验证了改进算法在处理现实工程问题上的优越性。

     

  • 图 1  随机分布与Halton序列分布初始化种群空间

    Figure 1.  Random distribution and Halton distribution initialize population space

    图 2  LT随迭代次数增加的变化曲线

    Figure 2.  L and T change curves with increase of iterations

    图 3  双重随机扰动策略示意图

    Figure 3.  Schematic diagram of double random disturbance strategy

    图 4  一维标准柯西分布与高斯分布概率密度曲线

    Figure 4.  Probability density curves of one-dimensional standard Cauchy distribution and Gaussian distribution

    图 5  中心位置计算示意图

    Figure 5.  Schematic diagram of central location calculation

    图 6  整体更新位置方式

    Figure 6.  Entire update position way

    图 7  逐维更新位置方式

    Figure 7.  Dimension-by-dimension update position way

    图 8  本文算法流程

    Figure 8.  Flowchart of the proposed algorithm

    图 9  DGTO算法与其他改进GTO算法的部分收敛曲线

    Figure 9.  Partial convergence plots of DGTO and other improved GTO algorithms

    图 10  各算法在函数f1f10的收敛曲线

    Figure 10.  Convergence curves of each algorithm in functions f1f10

    图 11  弹簧设计模型

    Figure 11.  Mode of spring design

    表  1  元学习与其他学习方法的潜在关联

    Table  1.   Potential correlation between meta-learning and other learning methods

    学习方法 与元学习关联
    对比学习 对比学习的核心是将正样本和负样本在特征空间进行对比,使得模型能够学习到样本的重要内在特征。而元学习在学习特征表示时,有时也会通过正样本和负样本比对的方式实现
    迁移学习 迁移学习的核心是找到已有知识和新知识之间的相似性,通过这种相似性的迁移达到迁移学习的目的。元学习基于任务展开学习,然而生物体及其一生,学习的永远不止一个任务,因而迁移学习可以将元学习在某一任务的学习方式迁移到相似任务中
    下载: 导出CSV

    表  2  参数设置

    Table  2.   Parameters setting

    算法 主要参数
    GTO s=0.03,w=0.8,$\beta $=3
    GWO
    DE F=0.5,RC=0.3
    WOA b=1
    DGTO s=0.03,w=0.8,$\beta $=3
    下载: 导出CSV

    表  3  基准测试函数

    Table  3.   Benchmark test functions

    编号 函数名 定义域 维度 最优值
    f1 Sphere [−100,100] 10/30 0
    f2 Schwefel’ problem 2.22 [−10,10] 10/30 0
    f3 Schwefel’ problem 1.2 [−100,100] 10/30 0
    f4 Schwefel’ problem 2.21 [−100,100] 10/30 0
    f5 Generalized Rosenbrock’s function [−30,30] 10/30 0
    f6 Step function [−100,100] 10/30 0
    f7 Generalized Schwefel’s problem 2.26 [−500,500] 10/30 −418.98×维度
    f8 Generalized penalized function 2 [−50,50] 10/30 0
    f9 Kowalik’s function [−5,5] 4 0.000 3
    f10 Hatman’s function 2 [0,1] 6 −3.32
    下载: 导出CSV

    表  4  DGTO算法与其他改进GTO算法寻优结果对比

    Table  4.   Comparison of optimization results of DGTO and other improved GTO algorithms

    参数 算法 平均值 标准差
    f1 GTO 0 0
    IGTO 0 0
    MGTO 0 0
    DGTO 0 0
    f2 GTO 6.67×10−195 0
    IGTO 0 0
    MGTO 0 0
    DGTO 0 0
    f3 GTO 0 0
    IGTO 0 0
    MGTO 0 0
    DGTO 0 0
    f4 GTO 1.01×10−192 0
    IGTO 0 0
    MGTO 0 0
    DGTO 0 0
    f5 GTO 3.17×100 8.22×100
    IGTO 7.46×10−5 8.57×10−5
    MGTO 2.54×10−5 3.94×10−5
    DGTO 7.42×10−6 3.39×10−5
    f6 GTO 2.56×10−7 4.19×10−7
    IGTO 1.01×10−7 1.15×10−7
    MGTO 3.37×10−14 3.76×10−14
    DGTO 2.03×10−32 1.66×10−32
    f7 GTO −1.26×104 3.05×10−5
    IGTO −1.26×104 3.02×10−5
    MGTO −1.26×104 1.03×10−6
    DGTO −1.26×104 4.64×10−12
    f8 GTO 3.30×10−3 5.12×10−3
    IGTO 1.14×10−7 3.34×10−7
    MGTO 1.00×10−7 1.43×10−7
    DGTO 7.24×10−32 2.30×10−31
    f9 GTO 4.17×10−4 3.01×10−4
    IGTO 3.07×10−4 4.06×10−19
    MGTO 3.07×10−4 3.29×10−19
    DGTO 3.07×10−4 1.74×10−19
    f10 GTO −3.29×100 5.39×10−2
    IGTO −3.31×100 3.63×10−2
    MGTO −3.30×100 4.51×10−2
    DGTO −3.32×100 0
    下载: 导出CSV

    表  5  各算法寻优结果对比

    Table  5.   Comparison of optimization results of each algorithm

    函数 算法 最优值 最差值 平均值 标准差
    f1 DGTO 0 0 0 0
    GTO 0 0 0 0
    GWO 2.62×10−69 6.96×10−63 3.93×10−64 1.28×10−63
    DE 6.09×10−20 1.86×10−18 5.05×10−19 4.44×10−19
    WOA 2.04×10−94 5.80×10−81 1.23×10−82 8.19×10−82
    f2 DGTO 0 0 0 0
    GTO 7.39×10−217 3.67×10−197 7.69×10−199 0
    GWO 3.25×10−39 8.12×10−36 5.90×10−37 1.30×10−36
    DE 1.91×10−12 2.93×10−11 9.68×10−12 4.55×10−12
    WOA 1.10×10−61 5.26×10−52 1.12×10−53 7.43×10−53
    f3 DGTO 0 0 0 0
    GTO 0 0 0 0
    GWO 3.82×10−37 3.02×10−27 8.81×10−29 4.33×10−28
    DE 2.63×100 2.74×101 8.17×100 5.41×100
    WOA 2.73×10−8 6.89×102 1.16×102 1.46×102
    f4 DGTO 0 0 0 0
    GTO 2.01×10−218 4.03×10−200 1.18×10−201 0
    GWO 9.71×10−24 2.86×10−19 1.79×10−20 4.48×10−20
    DE 2.60×10−5 1.31×10−4 6.72×10−5 2.38×10−5
    WOA 2.21×10−5 2.20×101 1.35×100 4.37×100
    f5 DGTO 7.46×10−30 2.25×10−11 6.34×10−13 3.28×10−12
    GTO 4.91×10−15 1.41×100 1.07×10−1 3.06×10−1
    GWO 5.32×100 9.54×100 6.70×100 7.69×10−1
    DE 1.74×100 1.75×101 7.58×100 2.78×100
    WOA 3.49×100 8.95×100 6.58×100 6.38×10−1
    f6 DGTO 0 1.23×10−32 5.55×10−34 1.94×10−33
    GTO 9.24×10−32 9.98×10−23 2.18×10−24 1.14×10−23
    GWO 1.11×10−6 6.33×10−6 2.97×10−6 1.13×10−6
    DE 5.02×10−20 2.93×10−18 4.00×10−19 4.42×10−19
    WOA 2.62×10−5 1.17×10−3 3.12×10−4 2.70×10−4
    f7 DGTO −4.19×103 −4.19×103 −4.19×103 2.13×10−12
    GTO −4.19×103 −4.19×103 −4.19×103 5.29×10−12
    GWO −3.56×103 −2.08×103 −2.84×103 3.65×102
    DE −7.94×107 −8.23×1014 −2.09×1013 1.20×1014
    WOA −4.19×103 −2.49×103 −3.46×103 5.61×102
    f8 DGTO 1.35×10−32 1.35×10−32 1.35×10−32 1.11×10−47
    GTO 7.26×10−30 7.46×10−2 5.34×10−3 1.25×10−2
    GWO 1.15×10−6 1.04×10−1 1.00×10−2 3.04×10−2
    DE 4.37×10−21 4.46×10−19 8.94×10−20 8.94×10−20
    WOA 2.57×10−4 1.10×10−1 1.44×10−2 2.57×10−2
    f9 DGTO 3.07×10−4 3.07×10−4 3.07×10−4 1.74×10−19
    GTO 3.07×10−4 1.22×10−3 4.17×10−4 3.01×10−4
    GWO 3.07×10−4 2.04×10−2 2.78×10−3 6.56×10−3
    DE 5.16×10−4 1.30×10−3 8.97×10−4 1.48×10−4
    WOA 3.08×10−4 2.17×10−3 6.93×10−4 4.89×10−4
    f10 DGTO −3.32×100 −3.32×100 −3.32×100 0
    GTO −3.32×100 −3.20×100 −3.29×100 5.39×10−2
    GWO −3.32×100 −3.09×100 −3.27×100 7.57×10−2
    DE −3.32×100 −3.20×100 −3.31×100 3.17×10−2
    WOA −3.32×100 −2.43×100 −3.22×100 1.45×10−1
    下载: 导出CSV

    表  6  不同算法的平均绝对值误差

    Table  6.   Mean absolute error of different algorithms

    算法 平均绝对值误差
    DGTO 3.09×10−3
    GTO 1.73×10−2
    GWO 1.36×102
    DE 2.09×1012
    WOA 8.54×101
    下载: 导出CSV

    表  7  Wilcoxon秩和检验结果

    Table  7.   Wilcoxon rank sum test results

    函数 p
    GTO GWO DE WOA
    f1 NAN 3.31×10−20 3.31×10−20 3.31×10−20
    f2 3.31×10−20 3.31×10−20 3.31×10−20 3.31×10−20
    f3 NAN 3.31×10−20 3.31×10−20 3.31×10−20
    f4 3.31×10−20 3.31×10−20 3.31×10−20 3.31×10−20
    f5 7.97×10−18 7.07×10−18 7.07×10−18 7.07×10−18
    f6 6.35×10−19 6.35×10−19 6.35×10−19 6.35×10−19
    f7 4.32×10−12 3.43×10−19 3.43×10−19 3.43×10−19
    f8 1.30×10−18 1.30×10−18 1.30×10−18 1.30×10−18
    f9 2.79×10−16 5.92×10−18 5.92×10−18 5.92×10−18
    f10 2.71×10−7 4.73×10−20 6.69×10−11 4.73×10−20
     注:参数p小于5×10−2表示DGTO与对比算法有显著差异,NAN表示无法进行显著性判断。
    下载: 导出CSV

    表  8  弹簧设计问题各算法最优解

    Table  8.   Optimal solution of each algorithm for spring design problem

    算法 d Da P 最优解
    DGTO 0.05172 0.35750 11.24294 0.012665252
    GTO 0.05162 0.35504 11.38775 0.012665321
    GWO 0.05120 0.34507 12.00899 0.012672677
    DE 0.05161 0.35479 11.40314 0.012665876
    WOA 0.05148 0.35182 11.58231 0.012666117
    SHO[30] 0.05114 0.34375 12.09550 0.012674000
    MVO[30] 0.05000 0.31596 14.22623 0.012816930
    SCA[30] 0.05078 0.33478 12.72269 0.012709667
    GSA[30] 0.05000 0.31731 14.22867 0.012873881
    下载: 导出CSV
  • [1] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Piscataway: IEEE Press, 2002: 39-43.
    [2] CHEN D, ZHANG S, YANG Y, et al. Optimization of character image matching based on artificial bee colony algorithm[J]. Journal of Physics: Conference Series, 2021, 2035(1): 012034.
    [3] MORIN M, ABI-ZEID I, QUIMPER C G. Ant colony optimization for path planning in search and rescue operations[J]. European Journal of Operational Research, 2023, 305(1): 53-63.
    [4] AL-IBRAHIM A M H. Solving travelling salesman problem (TSP) by hybrid genetic algorithm (HGA)[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(6): 376-384.
    [5] LI J H, LEI Y S, YANG S H. Mid-long term load forecasting model based on support vector machine optimized by improved sparrow search algorithm[J]. Energy Reports, 2022, 8: 491-497.
    [6] YAN Z P, ZHANG J Z, ZENG J, et al. Three-dimensional path planning for autonomous underwater vehicles based on a whale optimization algorithm[J]. Ocean Engineering, 2022, 250: 111070.
    [7] GUHA D, ROY P K, BANERJEE S. Load frequency control of interconnected power system using grey wolf optimization[J]. Swarm and Evolutionary Computation, 2016, 27: 97-115.
    [8] ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S. Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. International Journal of Intelligent Systems, 2021, 36(10): 5887-5958.
    [9] XIAO Y N, SUN X, GUO Y L, et al. An improved gorilla troops optimizer based on lens opposition-based learning and adaptive β-hill climbing for global optimization[J]. Computer Modeling in Engineering & Sciences, 2022, 131(2): 815-850.
    [10] LIANG Q W, CHU S C, YANG Q Y, et al. Multi-group gorilla troops optimizer with multi-strategies for 3D node localization of wireless sensor networks[J]. Sensors, 2022, 22(11): 4275.
    [11] WU T Y, WU D, JIA H M, et al. A modified gorilla troops optimizer for global optimization problem[J]. Applied Sciences, 2022, 12(19): 10144.
    [12] ALSOLAI H, ALZAHRANI J S, MARAY M, et al. Enhanced artificial gorilla troops optimizer based clustering protocol for UAV-assisted intelligent vehicular network[J]. Drones, 2022, 6(11): 358.
    [13] MOSTAFA R R, GAHEEN M A, ABD ELAZIZ M, et al. An improved gorilla troops optimizer for global optimization problems and feature selection[J]. Knowledge-Based Systems, 2023, 269: 110462.
    [14] BANGYAL W H, TAYYAB H, BATOOL H, et al. An improved particle swarm optimization algorithm with Chi-square mutation strategy[J]. International Journal of Advanced Computer Science and Applications, 2019, 10(3): 481-491.
    [15] 宋立钦, 陈文杰, 陈伟海, 等. 基于混合策略的麻雀搜索算法改进及应用[J]. 北京航空航天大学学报, 2023, 49(8): 2187-2199.

    SONG L Q, CHEN W J, CHEN W H, et al. Improvement and application of hybrid strategy-based sparrow search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 2187-2199(in Chinese).
    [16] 周理, 朱红求. 基于自适应步长果蝇算法的爬行机器人足端轨迹规划[J]. 机械设计与研究, 2021, 37(3): 60-63.

    ZHOU L, ZHU H Q. Foot trajectory planning of creeping robot based on adaptive step fruit fly optimization algorithm[J]. Machine Design & Research, 2021, 37(3): 60-63(in Chinese).
    [17] 宋阿妮, 包贤哲, 权轶. 基于混沌自适应萤火虫算法的UAVs分配策略[J]. 计算机应用与软件, 2022, 39(2): 300-306.

    SONG A N, BAO X Z, QUAN Y. Uavs scheduling strategy based on chaotic adaptive firefly algorithm[J]. Computer Applications and Software, 2022, 39(2): 300-306(in Chinese).
    [18] 李凡长, 刘洋, 吴鹏翔, 等. 元学习研究综述[J]. 计算机学报, 2021, 44(2): 422-446.

    LI F C, LIU Y, WU P X, et al. A survey on recent advances in meta-learning[J]. Chinese Journal of Computers, 2021, 44(2): 422-446 (in Chinese).
    [19] LI K W, LI S H, HUANG Z C, et al. Grey wolf optimization algorithm based on Cauchy-Gaussian mutation and improved search strategy[J]. Scientific Reports, 2022, 12: 18961.
    [20] 刘薇, 赵剑锟, 刘义保, 等. 基于改进型灰狼算法的γ能谱解析应用研究[J]. 核技术, 2021, 44(4): 31-36.

    LIU W, ZHAO J K, LIU Y B, et al. Application research of γ energy spectrum analysis based on improved grey wolf algorithm[J]. Nuclear Techniques, 2021, 44(4): 31-36(in Chinese).
    [21] KOHLI M, ARORA S. Chaotic grey wolf optimization algorithm for constrained optimization problems[J]. Journal of Computational Design and Engineering, 2018, 5(4): 458-472.
    [22] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
    [23] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
    [24] NABIL E. A modified flower pollination algorithm for global optimization[J]. Expert Systems with Applications, 2016, 57: 192-203.
    [25] 张新明, 王霞, 康强. 改进的灰狼优化算法及其高维函数和FCM优化[J]. 控制与决策, 2019, 34(10): 2073-2084.

    ZHANG X M, WANG X, KANG Q. Improved grey wolf optimizer and its application to high-dimensional function and FCM optimization[J]. Control and Decision, 2019, 34(10): 2073-2084(in Chinese).
    [26] LUO Q F, LI J, ZHOU Y Q, et al. Using spotted hyena optimizer for training feedforward neural networks[J]. Cognitive Systems Research, 2021, 65: 1-16.
    [27] ABUALIGAH L. Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications[J]. Neural Computing and Applications, 2020, 32(16): 12381-12401.
    [28] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
    [29] YAZDANI S, NEZAMABADI-POUR H, KAMYAB S. A gravitational search algorithm for multimodal optimization[J]. Swarm and Evolutionary Computation, 2014, 14: 1-14.
    [30] KAUR S, AWASTHI L K, SANGAL A L, et al. Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103541.
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  55
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 录用日期:  2023-09-11
  • 网络出版日期:  2023-10-20
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答