Experimental study on beam characteristics of µHT-1 thruster under wide range adjustment of operating parameters
-
摘要:
面向空间引力波探测任务需求,设计了瓦级微功率霍尔推力器µHT-1,并对该推力器的束流特性进行实验研究。采用法拉第探针结合三维移动机构进行诊断,获取阳极电压700~1 200 V、阳极工质流量0.1~0.5 sccm宽范围工况下束流离子电流密度分布,并进一步分析总束流值、阳极电流、电流利用率、发散角等参数变化趋势。测试结果表明:µHT-1推力器可在宽范围工况下稳定工作,束流呈现出较好的轴对称分布特性;离子电流密度沿轴向逐渐减小,沿径向双极扩散;阳极电压和阳极工质流量分别通过影响电子平均温度和通道中性原子密度分布的方式,使得电流利用率与发散角呈现出增长的趋势;推力器总束流与阳极工质流量、阳极电压均呈现线性增长特性。
Abstract:The beam properties of the micro Hall thruster µHT-1, which is intended for space gravitational wave detection, are being experimentally investigated for the first time. A Faraday probe combined with a three-dimensional mobile mechanism was used for diagnosis, and the beam ion current density distribution under a wide range of the anode voltage from 700 to
1200 V and the anode mass flow from 0.1 to 0.5 sccm was obtained. Moreover, the variation trend of total ion beam current, anode current, current utilization efficiency, beam divergence angle and other parameters were further analyzed. According to test data, the spatial distribution of beam ions changes from dense to sparse as one moves away from the axial direction of the µHT-1 thruster. Additionally, the beam becomes more flat due to the diffusion motion of beam ions in space and the binding motion of electrons and ions. The µHT-1 thruster can work stably under a wide range of conditions (anode voltage 700~1200 V, anode mass flow 0.1~0.5 sccm), and the beam current presents a good axis-symmetric distribution. With the increase of anode voltage, the average temperature of electrons can be increased, which further leads to the increase of ionization rate, that is, the current utilization efficiency increases from 53.4% to 67.7%; and the magnetic field restraint ability of high-energy electrons is weakened, affecting the electric field focusing, and the beam divergence angle increases from 41.3 ° to 56.1 °. With the increase of anode mass flow, the neutral atom density distribution in the channel is affected, the current utilization efficiency fluctuates in the range of 57.1 % ~ 66.8 %; and the ion collision zone is transferred to the outlet, making the beam divergence angle increase from 43.4 ° to 56.7 °. The total ion beam current of the thruster changes linearly with anode mass flow and anode voltage, which provides the data basis for the subsequent thrust wide range adjustment and thrust resolution analysis.-
Key words:
- micro Hall thruster /
- beam characteristics /
- ion current density /
- plasma diagnosis /
- experimental study
-
-
[1] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102 [2] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划” 及“太极1号” 在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10.LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program“taiji” and “taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10 (in Chinese). [3] 涂良成. 天琴计划的回顾与小结[J]. 中山大学学报(自然科学版), 2021, 60(增刊1): 253.TU L C. Review and summary of Tianqin Project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(Sup 1): 253 (in Chinese). [4] 胡越欣, 张立华, 高永, 等. 空间引力波探测航天器关键技术分析[J]. 航天器工程, 2022, 31(4): 1-7. doi: 10.3969/j.issn.1673-8748.2022.04.001HU Y X, ZHANG L H, GAO Y, et al. Analysis of key technologies of spacecraft for gravitational waves detection in space[J]. Spacecraft Engineering, 2022, 31(4): 1-7 (in Chinese). doi: 10.3969/j.issn.1673-8748.2022.04.001 [5] 祝竺, 赵艳彬, 尤超蓝, 等. 面向空间引力波探测的非接触式卫星平台无拖曳控制技术[J]. 南京航空航天大学学报, 2022, 54(增刊1): 9-13.ZHU Z, ZHAO Y B, YOU C L, et al. Drag-free control technology of non-contact satellite platform for space gravitational wave detection[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(Sup 1): 9-13 (in Chinese). [6] 于达仁, 崔凯, 刘辉, 等. 用于引力波探测的微牛级霍尔电推进技术[J]. 哈尔滨工业大学学报, 2020, 52(6): 171-181. doi: 10.11918/201911131YU D R, CUI K, LIU H, et al. Micro-Newton hall electric propulsion technology for gravitational wave detection[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 171-181 (in Chinese). doi: 10.11918/201911131 [7] 于达仁, 牛翔, 王泰卜, 等. 面向空间引力波探测任务的微推进技术研究进展[J]. 中山大学学报(自然科学版), 2021, 60(增刊1): 194-212.YU D R, NIU X, WANG T B, et al. The developments of micro propulsion technology based on space gravitational wave detection task[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(Sup 1): 194-212 (in Chinese). [8] ZIEMER J, MARRESE-READING C, DUNN C, et al. Colloid microthruster flight performance results from space technology 7 disturbance reduction system[C]//Proceedings of International Electric Propulsion Conference. Reston: AIAA, 2017. [9] LEITER H, LOTZ B, FEILI D, et al. Design development and test of the RIT-ÁX mini ion engine system[C]//Proceedings of the 31st International Electric Propulsion Conference. Michigan: IEPC, 2009: 179. [10] 李永, 刘旭辉, 汪旭东, 等. 空间极小推力宽范围可调推进技术研究进展[J]. 空间控制技术与应用, 2019, 45(6): 1-12,19. doi: 10.3969/j.issn.1674-1579.2019.06.001LI Y, LIU X H, WANG X D, et al. Review and prospect on the large-range thrust throttling technology with extremely small thrust[J]. Aerospace Control and Application, 2019, 45(6): 1-12,19 (in Chinese). doi: 10.3969/j.issn.1674-1579.2019.06.001 [11] AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[EB/OL]. (2017-02-01) [2013-05-28]. https://arxiv.org/abs/1702.00786, 2017. [12] HEY F G. Micro Newton thruster development[M]. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. [13] XU S Y, XU L X, CONG L X, et al. First result of orbit verification of Taiji-1 hall micro thruster[J]. International Journal of Modern Physics A, 2021, 36: 2140013-21400S9. doi: 10.1142/S0217751X21400133 [14] POTRIVITU G C, SUN Y F, BIN ROHAIZAT M W A, et al. A review of low-power electric propulsion research at the space propulsion centre Singapore[J]. Aerospace, 2020, 7(6): 67. doi: 10.3390/aerospace7060067 [15] 杭观荣, 李诗凝, 康小录, 等. 霍尔电推进空间应用现状及未来展望[J]. 推进技术, 2023, 44(6): 38-51.HANG G R, LI S N, KANG X L, et al. Current space application status and future prospect of Hall electric propulsion[J]. Journal of Propulsion Technology, 2023, 44(6): 38-51 (in Chinese). [16] MIKELLIDES I G, KATZ I, GOEBEL D M, et al. Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region[J]. Journal of Applied Physics, 2005, 98(11): 113303.1-113303.14. [17] HOFER R R, GOEBEL D M, MIKELLIDES I G, et al. Magnetic shielding of a laboratory Hall thruster. II. Experiments[J]. Journal of Applied Physics, 2014, 115(4): 043304. [18] 朱悉铭, 宁中喜, 于达仁. HEP-70 霍尔推力器的发射光谱诊断研究[C]//第十八届全国等离子体科学技术会议摘要集. 合肥: 中国科学技术大学出版社, 2017: 240.ZHU X M, NING Z X, YU D R. Emission spectroscopy diagnostics of HEP-70 Hall thruster [C]//Proceedings of the 18th National Conference on Plasma Science and Technology. Hefei: University of Science and Technology of China Press, 2017: 240(in Chinese). [19] 陈新伟, 高俊, 顾左, 等. 变工况下自励磁模式 LHT-60 霍尔推力器放电特性试验研究[J]. 真空与低温, 2022, 28(1): 106-114(in Chinese). doi: 10.3969/j.issn.1006-7086.2022.01.013CHEN X W, GAO J, GU Z, et al. Experimental study on discharge characteristics of self-field mode LHT-60 Hall thruster under variable operating conditions[J]. Vacuum and Cryogenics, 2022, 28(1): 106-114. doi: 10.3969/j.issn.1006-7086.2022.01.013 [20] LU S X, LUO W, LONG J F, et al. Numerical simulation optimization of neutral flow dynamics in low-power Hall thruster[J]. Results in Physics, 2023, 46: 106268. doi: 10.1016/j.rinp.2023.106268 [21] 罗威, 龙建飞, 徐禄祥, 等. 霍尔推力器放电通道中性气体分布及检测技术研究进展[J]. 固体火箭技术, 2023, 46(1): 158-166. doi: 10.7673/j.issn.1006-2793.2023.01.019LUO W, LONG J F, XU L X, et al. Research progress of distribution and detection technology neutral gas in Hall thruster discharge channel[J]. Journal of Solid Rocket Technology, 2023, 46(1): 158-166 (in Chinese). doi: 10.7673/j.issn.1006-2793.2023.01.019 [22] 龙建飞, 徐禄祥, 吴铭钐, 等. 一种霍尔推力器供气管路的气路分压绝缘方法及其应用: 中国, CN114458565B[P]. 2022-07-12.LONG J F, XU L X, WU M S, et al. A method of gas circuit pressure divider insulation for Hall thruster supply line and its application: China, CN114458565B[P]. 2022-07-12(in Chinese). [23] 龙建飞, 徐禄祥, 吴铭钐, 等. 一种霍尔推力器环式分压气路绝缘结构: 中国, CN114458564B[P]. 2022-07-12.LONG J F, XU L X, WU M S, et al. An annular voltage-division gas path insulation structure for Hall thruster: China, CN114458564B [P]. 2022-07-12(in Chinese). [24] 宁中喜. 霍尔推力器羽流发散角的定向探针测量方法[J]. 推进技术, 2011, 32(6): 895-899.NING Z X. Directional probe measurement of plume divergence angle in Hall thrusters[J]. Journal of Propulsion Technology, 2011, 32(6): 895-899 (in Chinese). [25] 龙建飞, 张天平, 吴辰宸, 等. LIPS-200离子推力器放电室出口离子密度分布研究[J]. 推进技术, 2018, 39(5): 1194-1200.LONG J F, ZHANG T P, WU C C, et al. Study on ion density distribution in discharge chamber exit of LIPS-200 ion thruster[J]. Journal of Propulsion Technology, 2018, 39(5): 1194-1200 (in Chinese). [26] 刘星宇, 李鸿, 毛威, 等. 霍尔推力器能量损失系统性评价方法[J]. 推进技术, 2022, 43(7): 470-480.LIU X Y, LI H, MAO W, et al. Systematic evaluation method for power loss of Hall thruster[J]. Journal of Propulsion Technology, 2022, 43(7): 470-480 (in Chinese). [27] 商圣飞, 顾左, 贺碧蛟, 等. 离子推力器束流密度分布模型[J]. 真空科学与技术学报, 2015, 35(12): 1414-1419.SHANG S F, GU Z, HE B J, et al. Modelling of ion beam current density of ion thruster[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(12): 1414-1419 (in Chinese). [28] 卿绍伟, 鄂鹏, 段萍. 壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响[J]. 物理学报, 2013, 62(5): 279-286. doi: 10.7498/aps.62.055202QING S W, E P, DUAN P. Effect of wall secondary electron emission on the characteristics of double sheath near the dielectric wall in Hall thruster[J]. Acta Physica Sinica, 2013, 62(5): 279-286 (in Chinese). doi: 10.7498/aps.62.055202 [29] 杨三祥, 王倩楠, 高俊, 等. 径向磁场对霍尔推力器性能影响的数值模拟研究[J]. 物理学报, 2022, 71(10): 347-355.YANG S X, WANG Q N, GAO J, et al. Numerical study of the effect of radial magnetic field on performance of Hall thruster[J]. Acta Physica Sinica, 2022, 71(10): 347-355 (in Chinese). -