留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度图卷积网络的自监督群体发现模型

王栽胜 汪晓锋 沈国栋 张增杰 全大英

王栽胜,汪晓锋,沈国栋,等. 基于深度图卷积网络的自监督群体发现模型[J]. 北京航空航天大学学报,2025,51(6):2022-2032 doi: 10.13700/j.bh.1001-5965.2023.0408
引用本文: 王栽胜,汪晓锋,沈国栋,等. 基于深度图卷积网络的自监督群体发现模型[J]. 北京航空航天大学学报,2025,51(6):2022-2032 doi: 10.13700/j.bh.1001-5965.2023.0408
WANG Z S,WANG X F,SHENG G D,et al. Self-supervised learning for community detection based on deep graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2022-2032 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0408
Citation: WANG Z S,WANG X F,SHENG G D,et al. Self-supervised learning for community detection based on deep graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2022-2032 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0408

基于深度图卷积网络的自监督群体发现模型

doi: 10.13700/j.bh.1001-5965.2023.0408
基金项目: 

浙江省自然科学基金(LQ20F020021);国家重点研发计划(2019YFB1707104)

详细信息
    通讯作者:

    E-mail:xfwang@cjlu.edu.cn

  • 中图分类号: TP39

Self-supervised learning for community detection based on deep graph convolutional networks

Funds: 

Zhejiang Provincial Natural Science Foundation of China (LQ20F020021); National Key Research and Development Program of China (2019YFB1707104)

More Information
  • 摘要:

    为缓解图神经网络在群体发现任务中对先验知识的过度依赖并提高识别准确性,提出了一种基于自监督学习和深度图卷积网络(GCN)的群体发现模型。该模型充分利用少量标记节点的语义特征,并通过语义对齐机制获得未知节点的伪标签,从而引入一种自监督学习模块以缓解GCN模型训练过程中对大量先验标签的依赖性。同时,为通过获取网络全局信息以提高群体识别的准确性,通过堆叠多个自监督学习模块构建一种深度图自监督学习模型,并利用初始残差和恒等映射2种策略来克服深度模型带来的过平滑问题。在公开数据集上的实验表明:在给定少量先验标签和加深模型深度的情况下,所提模型与现有模型相比在群体识别精度上表现出了明显优势。

     

  • 图 1  本文模型整体框架

    Figure 1.  Overall framework of the proposed model

    图 2  自监督学习模块结构框图

    Figure 2.  Structure of the self-supervised learning module

    图 3  不同已知标签数量条件下2种模型在Cora数据集上获得的节点特征 t-SNE 可视化

    Figure 3.  t-SNE visualization of node features obtained by two model on Cora dataset under different numbers of known labels

    图 4  不同模型深度下2种模型在Cora数据集上获得的节点特征 t-SNE 可视化

    Figure 4.  t-SNE visualization of node features obtained by two models on Core dataset under different model depth

    图 5  超参数对模型聚类准确率的影响

    Figure 5.  The influence of hyper-parameters on model clustering accuracy

    表  1  数据集基本信息

    Table  1.   Basic information of datasets

    数据集 节点数 边数 社群数 特征维度
    Cora 2 708 5 429 7 1 433
    Citeseer 3 327 4 732 6 3 703
    PubMed 19 717 44 338 3 500
    下载: 导出CSV

    表  2  在不同数量的已知标签条件下模型聚类精度比较

    Table  2.   Comparison of clustering accuracy of various models under different numbers of known labels %

    模型 每类1个标签 每类2个标签 每类5个标签
    Cora Citeseer PubMed Cora Citeseer PubMed Cora Citeseer PubMed
    MLP 42.5 27.9 49.5 48.9 33.6 55.9 59.9 43.2 65.1
    GCN[12] 43.2 33.6 51.9 50.1 41.8 54.9 69.0 53.2 68.1
    GAT[13] 44.6 33.9 52.1 59.6 44.1 58.6 70.6 54.3 68.8
    DAGNN[39] 59.1 44.3 56.3 64.2 53.8 64.8 71.2 54.7 70.6
    Self-SAGCN[25] 61.2 56.8 63.2 70.8 63.9 68.8 75.1 66.9 71.9
    SDGCN 63.8 57.8 65.3 71.5 64.4 70.9 78.6 68.1 73.5
    下载: 导出CSV

    表  3  在不同模型深度条件下模型聚类精度对比

    Table  3.   Comparison of clustering accuracy of various models under different model depth

    模型层数为4层数为16层数为32层数为64
    CoraCiteseerPubMedCoraCiteseerPubMedCoraCiteseerPubMedCoraCiteseerPubMed
    GCN[12]67.815.617.216.450.618.914.917.671.640.236.639.9
    GCN(drop)80.675.762.549.568.657.341.133.278.377.676.261.1
    JKNet[18]78.979.380.670.967.968.269.263.178.172.173.673.1
    GCNII[20]79.283.183.984.167.070.270.871.679.177.679.679.9
    Self-SAGCN[25]75.134.631.630.862.548.926.218.175.350.843.740.1
    SDGCN81.282.684.185.270.271.672.772.278.679.280.180.6
    下载: 导出CSV
  • [1] BEDRU H D, YU S, XIAO X R, et al. Big networks: a survey[J]. Computer Science Review, 2020, 37: 100247. doi: 10.1016/j.cosrev.2020.100247
    [2] DA MATA A S. Complex networks: a mini-review[J]. Brazilian Journal of Physics, 2020, 50(5): 658-672. doi: 10.1007/s13538-020-00772-9
    [3] 潘理, 吴鹏, 黄丹华. 在线社交网络群体发现研究进展[J]. 电子与信息学报, 2017, 39(9): 2097-2107. doi: 10.11999/JEIT161192

    PAN L, WU P, HUANG D H. Reviews on group detection in online social networks[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2097-2107(in Chinese). doi: 10.11999/JEIT161192
    [4] CAI B, ZENG L N, WANG Y P, et al. Community detection method based on node density, degree centrality, and K-means clustering in complex network[J]. Entropy, 2019, 21(12): 1145. doi: 10.3390/e21121145
    [5] SU X, XUE S, LIU F Z, et al. A comprehensive survey on community detection with deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4682-4702. doi: 10.1109/TNNLS.2021.3137396
    [6] 齐金山, 梁循, 李志宇, 等. 大规模复杂信息网络表示学习: 概念、方法与挑战[J]. 计算机学报, 2018, 41(10): 2394-2420. doi: 10.11897/SP.J.1016.2018.02394

    QI J S, LIANG X, LI Z Y, et al. Representation learning of large-scale complex information network: concepts, methods and challenges[J]. Chinese Journal of Computers, 2018, 41(10): 2394-2420(in Chinese). doi: 10.11897/SP.J.1016.2018.02394
    [7] ZHOU Z, AMINI A A. Analysis of spectral clustering algorithms for community detection: the general bipartite setting[J]. The Journal of Machine Learning Research, 2019, 20(1): 1774-1820.
    [8] ZHANG Y, YEUNG D Y. Overlapping community detection via bounded nonnegative matrix tri-factorization[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 606-614.
    [9] YANG B, ZHAO X H, LIU X Y. Bayesian approach to modeling and detecting communities in signed network[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Austin: AAAI, 2015: 1952-1958.
    [10] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. doi: 10.1109/TNNLS.2020.2978386
    [11] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. doi: 10.11897/SP.J.1016.2020.00755

    XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780(in Chinese). doi: 10.11897/SP.J.1016.2020.00755
    [12] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2023-05-25]. https://arxiv.org/abs/1609.02907.
    [13] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2023-05-25]. https://arxiv.org/abs/1710.10903.
    [14] WANG H W, WANG J, WANG J L, et al. GraphGAN: graph representation learning with generative adversarial nets[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 2508-2515.
    [15] JIN D, LIU Z Y, LI W H, et al. Graph convolutional networks meet Markov random fields: semi-supervised community detection in attribute networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 152-159.
    [16] HU R Q, PAN S R, LONG G D, et al. Going deep: graph convolutional ladder-shape networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. NewYork: AAAI, 2020: 2838-2845.
    [17] JIN D, LI B Y, JIAO P F, et al. Community detection via joint graph convolutional network embedding in attribute network [C]//Proceedings of International Conference on Artificial Neural Networks. Berlin: Springer, 2019: 594-606.
    [18] XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]//Proceedings of the International conference on machine learning. Stockholm: PMLR, 2018: 5453-5462.
    [19] RONG Y, HUANG W B, XU T Y, et al. DropEdge: towards deep graph convolutional networks on node classification[EB/OL]. (2010-03-12) [2023-05-26]. https://arxiv.org/abs/1907.10903.
    [20] CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks[C]//Proceedings of the International Conference on Machine Learning. Vienna: PMLR, 2020: 1725-1735.
    [21] LIU X, ZHANG F J, HOU Z Y, et al. Self-supervised learning: generative or contrastive[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 857-876.
    [22] YOU Y N, CHEN T L, WANG Z Y, et al. When does self-supervision help graph convolutional networks?[EB/OL]. (2020-06-18) [2023-05-26]. https://arxiv.org/abs/2006.09136.
    [23] ZHU Y Q, XU Y C, YU F, et al. CAGNN: cluster-aware graph neural networks for unsupervised graph representation learning[EB/OL]. (2020-09-03) [2023-05-26]. https://arxiv.org/abs/2009.01674.
    [24] SUN K, LIN Z C, ZHU Z X. Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 5892-5899.
    [25] YANG X, DENG C, DANG Z Y, et al. Self-SAGCN: Self-supervised semantic alignment for graph convolution network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 16770-16779.
    [26] JIA S W, GAO L, GAO Y, et al. Defining and identifying cograph communities in complex networks[J]. New Journal of Physics, 2015, 17(1): 013044. doi: 10.1088/1367-2630/17/1/013044
    [27] ZHANG P, MOORE C. Scalable detection of statistically significant communities and hierarchies, using message passing for modularity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): 18144-18149.
    [28] FANUEL M, ALAÍZ C M, SUYKENS J A K. Magnetic eigenmaps for community detection in directed networks[J]. Physical Review E, 2017, 95(2-1): 022302.
    [29] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008: 10008. doi: 10.1088/1742-5468/2008/10/P10008
    [30] HOLLAND P W, LASKEY K B, LEINHARDT S. Stochastic block models: first steps[J]. Social Networks, 1983, 5(2): 109-137. doi: 10.1016/0378-8733(83)90021-7
    [31] LIU J H, MA G X, JIANG F, et al. Community-preserving graph convolutions for structural and functional joint embedding of brain networks[C]//Proceedings of the IEEE International Conference on Big Data. Piscataway: IEEE Press, 2019: 1163-1168.
    [32] ZHANG T Q, XIONG Y, ZHANG J W, et al. CommDGI: community detection oriented deep graph infomax[C]//Proceedings of the ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1843-1852.
    [33] ZHAO H, YANG X, WANG Z, et al. Graph debiased contrastive learning with joint representation clustering[C]//Proceedings of the International Joint Conference on Artificial Intelligence. Montreal: IJCAI, 2021: 3434-3440.
    [34] WANG X F, LI J H, YANG L, et al. Unsupervised learning for community detection in attributed networks based on graph convolutional network[J]. Neurocomputing, 2021, 456: 147-155. doi: 10.1016/j.neucom.2021.05.058
    [35] QIAO F, HUANG C X, XU S, et al. Community detection model based on graph representation and self-supervised learning[C]//Proceedings of the Artificial Intelligence and Security. Berlin: Springer, 2021: 27-40.
    [36] JIN W, DERR T, LIU H, et al. Self-supervised learning on graphs: deep insights and new direction[EB/OL]. (2020-06-17)[2023-05-20]. https://doi.org/10.48550/arXiv.2006.10141.
    [37] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [38] KLICPERA J, BOJCHEVSKI A, GÜNNEMANN S. Predict then propagate: graph neural networks meet personalized PageRank[EB/OL]. (2022-04-05) [2023-05-28]. https://arxiv.org/abs/1810.05997.
    [39] LIU M, GAO H Y, JI S W. Towards deeper graph neural networks[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 338-348.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  42
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 录用日期:  2023-11-21
  • 网络出版日期:  2023-12-06
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答